• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topologieoptimierung im Creo-Umfeld mit ProTopCI

Simmler, Urs 22 July 2016 (has links) (PDF)
Wikipedia umschreibt die Topologieoptimierung als ein computerbasiertes Berechnungsverfahren, durch welches eine günstige Grundgestalt (Topologie) für Bauteile unter mechanischer Belastung ermittelt werden kann. Durch die Verwendung von 3D-Druck-Verfahren wird die Gestaltung der Komponenten revolutioniert, weil diese nicht mehr abhängig vom Fertigungsverfahren sind. Dabei werden auch optimale Gitterstrukturen innerhalb der Komponenten immer wichtiger. Diese neuen Herausforderungen können im Creo Umfeld mit ProTopCI (Hersteller CAESS, PTC Partner Advantage, Silver) elegant gelöst werden. Im Vortrag (mit Live-Demonstration) werden die neuen Möglichkeiten dieser innovativen Lösung beleuchtet: Modellerzeugung in Creo Simulate (FEM-Mode): - Verschiedene Lastfälle, - Kontakte, - Schraubenverbindungen, - CAD-Geometrie, - zu optimierende Bereiche, ... Technologische Randbedingungen zur Berücksichtigung des Fertigungsverfahren Innovatives Erzeugen/Optimieren der Gitterstrukturen Glätten, Exportieren der optimierten Geometrie
2

Vergleich von Stützstrukturen für die additive Fertigung

Simmler, Urs 09 June 2017 (has links) (PDF)
Durch die Verwendung von 3D-Druck-Verfahren wird die Gestaltung der Komponenten revolutioniert, weil die Form nicht mehr abhängig vom Fertigungsverfahren ist. Dabei werden auch optimale Gitterstrukturen innerhalb der Komponenten immer wichtiger. Diese Stützstrukturen können in Creo Parametric 4.0 mit dem neuen «Lattice-Feature» modelliert und Creo Simulate analysiert werden. Parallel dazu kann man mit ProTopCI (Hersteller CAESS, PTC Partner Advantage, Silver) eine Topologieoptimierung mit Stützstrukturen durchführen. Der Vortrag beleuchtet die Unterschiede dieser 2 Methoden.
3

Vergleich von Stützstrukturen für die additive Fertigung: CreoParametric/Simulate4.0 <-->ProTOpCI

Simmler, Urs 09 June 2017 (has links)
Durch die Verwendung von 3D-Druck-Verfahren wird die Gestaltung der Komponenten revolutioniert, weil die Form nicht mehr abhängig vom Fertigungsverfahren ist. Dabei werden auch optimale Gitterstrukturen innerhalb der Komponenten immer wichtiger. Diese Stützstrukturen können in Creo Parametric 4.0 mit dem neuen «Lattice-Feature» modelliert und Creo Simulate analysiert werden. Parallel dazu kann man mit ProTopCI (Hersteller CAESS, PTC Partner Advantage, Silver) eine Topologieoptimierung mit Stützstrukturen durchführen. Der Vortrag beleuchtet die Unterschiede dieser 2 Methoden.
4

Topologieoptimierung im Creo-Umfeld mit ProTopCI

Simmler, Urs 22 July 2016 (has links)
Wikipedia umschreibt die Topologieoptimierung als ein computerbasiertes Berechnungsverfahren, durch welches eine günstige Grundgestalt (Topologie) für Bauteile unter mechanischer Belastung ermittelt werden kann. Durch die Verwendung von 3D-Druck-Verfahren wird die Gestaltung der Komponenten revolutioniert, weil diese nicht mehr abhängig vom Fertigungsverfahren sind. Dabei werden auch optimale Gitterstrukturen innerhalb der Komponenten immer wichtiger. Diese neuen Herausforderungen können im Creo Umfeld mit ProTopCI (Hersteller CAESS, PTC Partner Advantage, Silver) elegant gelöst werden. Im Vortrag (mit Live-Demonstration) werden die neuen Möglichkeiten dieser innovativen Lösung beleuchtet: Modellerzeugung in Creo Simulate (FEM-Mode): - Verschiedene Lastfälle, - Kontakte, - Schraubenverbindungen, - CAD-Geometrie, - zu optimierende Bereiche, ... Technologische Randbedingungen zur Berücksichtigung des Fertigungsverfahren Innovatives Erzeugen/Optimieren der Gitterstrukturen Glätten, Exportieren der optimierten Geometrie
5

Utilization of 3D printing technology to facilitate and standardize soft tissue testing

Scholze, Mario, Singh, Aqeeda, Lozano, Pamela F., Ondruschka, Benjamin, Ramezani, Maziar, Werner, Michael, Hammer, Niels 16 August 2018 (has links)
Three-dimensional (3D) printing has become broadly available and can be utilized to customize clamping mechanisms in biomechanical experiments. This report will describe our experience using 3D printed clamps to mount soft tissues from different anatomical regions. The feasibility and potential limitations of the technology will be discussed. Tissues were sourced in a fresh condition, including human skin, ligaments and tendons. Standardized clamps and fixtures were 3D printed and used to mount specimens. In quasi-static tensile tests combined with digital image correlation and fatigue trials we characterized the applicability of the clamping technique. Scanning electron microscopy was utilized to evaluate the specimens to assess the integrity of the extracellular matrix following the mechanical tests. 3D printed clamps showed no signs of clamping-related failure during the quasi-static tests, and intact extracellular matrix was found in the clamping area, at the transition clamping area and the central area from where the strain data was obtained. In the fatigue tests, material slippage was low, allowing for cyclic tests beyond 105 cycles. Comparison to other clamping techniques yields that 3D printed clamps ease and expedite specimen handling, are highly adaptable to specimen geometries and ideal for high-standardization and high-throughput experiments in soft tissue biomechanics.
6

Die TU Dresden als eine Keimzelle der Digitalisierung im Maschinenbau: Aktivitäten und Erfahrungen in der deutsch-deutschen und internationalen Zusammenarbeit von 1960 bis 2020

Kochan, Detlef 29 April 2021 (has links)
Von Beginn der flexiblen Automatisierung mit numerisch gesteuerten Werkzeugmaschinen und der zugehörigen Programmier-Software bis zum gegenwärtigen Entwicklungsstand (Industrie 4.0) wird die historische Entwicklung von 1960 bis 2020 aus der Position eines aktiven Mitgestalters dargestellt. Interessanterweise vollzogen sich die wesentlichen Entwicklungsetappen für die ersten dreißig Jahre parallel in beiden deutschen Staaten. Aus den Lehren des Zweiten Weltkrieges wurden im Rahmen der UNESCO zum friedlichen Informationsaustausch geeignete wissenschaftliche Organisationen gegründet: • IFIP (Internationale Föderation für Informationsprozesse, speziell Arbeitsgrupp CAM • CIRP (Internationale Akademie der Fertigungstechniker) Mit der Berufung und aktiven Mitarbeit in diesen Organisationen war eine Plattform für die deutsch-deutsche und darüber hinaus internationale Kooperation gegeben. Ein besonderer Schwerpunkt für den geordneten Informationsaustausch im Rahmen der gesamten dynamischen Entwicklung im Gebiet der Produktionsautomatisierung war dabei die im 3-Jahres-Rhythmus durchgeführte Konferenzserie PROLAMAT (Programming Languages for Machine Tools), gestartet 1969 in Rom. Im weiteren Verlauf wurde dieser Begriff viel breiter für das gesamte Gebiet der automatisierten Informationsverarbeitung und Fertigung erweitert. Ein besonderer Höhepunkt war dabei die erfolgreichste PROLAMAT-Konferenz 1988 in Dresden. Parallel dazu erfolgten an der TU Dresden Entwicklungen in Richtung CAD/CAM-Labor und später CIM-TT (CIM-Technologietransferzentrum). Damit war an der TU Dresden 1989/90 ein Entwicklungsstand gegeben, der unmittelbar zu gemeinsamen deutsch-deutschen und internationalen EU-Projekten genutzt werden konnte. Dieses hohe Entwicklungsniveau wurde zur offiziellen Eröffnung des CIM-TT-Zentrums in den Eröffnungsreferaten durch den damaligen Wissenschaftsminister Dr. Riesenhuber und Ministerpräsident Prof. Biedenkopf gewürdigt. Durch die zum gleichen Zeitpunkt verfügte veränderte Nutzung des für das CIM-TT im Aufbau befindliche Gebäude durch die neugegründete Juristische Fakultät wurde der erfolgreich vorbereitete Weg verhindert. Unabhängig davon blieb meine fachliche Orientierung mit den gravierenden Weiterentwicklungen eng verbunden. Dazu trug das Sabbatical-Jahr in Norwegen und den USA 1992 maßgeblich bei. Mit dem Forschungsaufenthalt war die Entscheidungsvorbereitung für die vorgesehene Groß-Investition für das neueste generative Verfahren verbunden. Gleichzeitig mit dem fundierten Nachweis der bestgeeigneten sog. Rapid-Prototyping-Anlage vom deutschen Anbieter EOS München war die TU Dresden auf diesem neuen High-Tech-Gebiet 1992 in einer anerkannten Spitzenposition. Mit meiner Publikation eines der ersten Fachbücher im Gebiet Advanced Prototyping (jetzt Additiv Manufacturing) war darüber hinaus eine gute Basis für weitere innovative Aktivitäten gegeben Dazu gehört die Gründung einer High-Tech-Firma (SFM - Schnelle Fertigung von Modellen) mit bemerkenswerten beispielgebenden Ergebnissen. Hervorgehoben soll die zwanzigjährige aktive Kooperation mit der Universität Stellenbosch (RSA - Republik Südafrika), die unter anderem mit meiner Berufung zum Extraordinary Professor im Jahr 2003 verbunden ist. Mit der Eröffnung eines Technologie-Zentrums nach dem Vorbild des ursprünglichen CIM TT -Zentrums der TU Dresden konnte für Südafrika ein wertvoller Beitrag geleistet werden. Das gesamte Lebenswerk ist gekennzeichnet durch die Entwicklungsschritte von der Mathematisierung über die Algorithmierung bis hin zur Programmierung vielfältiger technologischer Sachverhalte. Die Ergebnisse sind in einer Anzahl von persönlichen Fachbüchern (z.T. übersetzt in das Russische und Ungarische) wie auch Konferenzberichten und mehr als 200 Veröffentlichungen (deutsch und englisch) dokumentiert.

Page generated in 0.0405 seconds