• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple Session 3D Reconstruction using RGB-D Cameras / 3D-rekonstruktion med RGB-D kamera över multipla sessioner

Widebäck West, Nikolaus January 2014 (has links)
In this thesis we study the problem of multi-session dense rgb-d slam for 3D reconstruc- tion. Multi-session reconstruction can allow users to capture parts of an object that could not easily be captured in one session, due for instance to poor accessibility or user mistakes. We first present a thorough overview of single-session dense rgb-d slam and describe the multi-session problem as a loosening of the incremental camera movement and static scene assumptions commonly held in the single-session case. We then implement and evaluate sev- eral variations on a system for doing two-session reconstruction as an extension to a single- session dense rgb-d slam system. The extension from one to several sessions is divided into registering separate sessions into a single reference frame, re-optimizing the camera trajectories, and fusing together the data to generate a final 3D model. Registration is done by matching reconstructed models from the separate sessions using one of two adaptations on a 3D object detection pipeline. The registration pipelines are evaluated with many different sub-steps on a challenging dataset and it is found that robust registration can be achieved using the proposed methods on scenes without degenerate shape symmetry. In particular we find that using plane matches between two sessions as constraints for as much as possible of the registration pipeline improves results. Several different strategies for re-optimizing camera trajectories using data from both ses- sions are implemented and evaluated. The re-optimization strategies are based on re- tracking the camera poses from all sessions together, and then optionally optimizing over the full problem as represented on a pose-graph. The camera tracking is done by incrementally building and tracking against a tsdf volume, from which a final 3D mesh model is extracted. The whole system is qualitatively evaluated against a realistic dataset for multi-session re- construction. It is concluded that the overall approach is successful in reconstructing objects from several sessions, but that other fine grained registration methods would be required in order to achieve multi-session reconstructions that are indistinguishable from singe-session results in terms of reconstruction quality.

Page generated in 0.0379 seconds