• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalable Multiple Description Coding and Distributed Video Streaming over 3G Mobile Networks

Zheng, Ruobin January 2003 (has links)
In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems in the wireless networks and further enhance the error resilience tools in Moving Pictures Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple description coding (MDC) is explored. It leverages a proposed distributed multimedia delivery mobile network (D-MDMN) to provide path diversity to combat streaming video outage due to handoff in Universal Mobile Telecommunications System (UMTS). The corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff procedures in D-MDMN are studied in details, which employ the principle of video stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm is proposed to support the unequal error protection (UEP) of LC components of SMDC. Performance evaluation is carried through simulation using OPNET Modeler 9. 0. Simulation results show that the proposed handoff procedures in D-MDMN have better performance in terms of handoff latency, end-to-end delay and handoff scalability than that in UMTS. Performance evaluation of our proposed IP DiffServ video marking algorithm is also undertaken, which shows that it is more suitable for video streaming in IP mobile networks compared with the previously proposed DiffServ video marking algorithm (DVMA).
2

Scalable Multiple Description Coding and Distributed Video Streaming over 3G Mobile Networks

Zheng, Ruobin January 2003 (has links)
In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems in the wireless networks and further enhance the error resilience tools in Moving Pictures Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple description coding (MDC) is explored. It leverages a proposed distributed multimedia delivery mobile network (D-MDMN) to provide path diversity to combat streaming video outage due to handoff in Universal Mobile Telecommunications System (UMTS). The corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff procedures in D-MDMN are studied in details, which employ the principle of video stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm is proposed to support the unequal error protection (UEP) of LC components of SMDC. Performance evaluation is carried through simulation using OPNET Modeler 9. 0. Simulation results show that the proposed handoff procedures in D-MDMN have better performance in terms of handoff latency, end-to-end delay and handoff scalability than that in UMTS. Performance evaluation of our proposed IP DiffServ video marking algorithm is also undertaken, which shows that it is more suitable for video streaming in IP mobile networks compared with the previously proposed DiffServ video marking algorithm (DVMA).
3

Maintaining QoS through preferential treatment to UMTS services

Awan, Irfan U., Al-Begain, Khalid January 2003 (has links)
One of the main features of the third generation (3G) mobile networks is their capability to provide different classes of services; especially multimedia and real-time services in addition to the traditional telephony and data services. These new services, however, will require higher Quality of Service (QoS) constraints on the network mainly regarding delay, delay variation and packet loss. Additionally, the overall traffic profile in both the air interface and inside the network will be rather different than used to be in today's mobile networks. Therefore, providing QoS for the new services will require more than what a call admission control algorithm can achieve at the border of the network, but also continuous buffer control in both the wireless and the fixed part of the network to ensure that higher priority traffic is treated in the proper way. This paper proposes and analytically evaluates a buffer management scheme that is based on multi-level priority and Complete Buffer Sharing (CBS) policy for all buffers at the border and inside the wireless network. The analytical model is based on the G/G/1/N censored queue with single server and R (R¿2) priority classes under the Head of Line (HoL) service rule for the CBS scheme. The traffic is modelled using the Generalised Exponential distribution. The paper presents an analytical solution based on the approximation using the Maximum Entropy (ME) principle. The numerical results show the capability of the buffer management scheme to provide higher QoS for the higher priority service classes.

Page generated in 0.0407 seconds