1 |
A closed circuit electro-hydraulic actuator with energy recuperation capabilityQu, Shaoyang, Fassbender, David, Vacca, Andrea, Busquets, Enrique, Neumann, Uwe 23 June 2020 (has links)
The recent electrification trend in the off-road market has incentivized research towards the proposal of compact, cost-effective and energy-efficient solutions for hydraulic actuators. As a result, increased attention has been given to electro-hydraulic actuator (EHA) architectures. The paper offers a study performed on a novel closed-circuit EHA architecture with the goal to maximize the overall system efficiency while meeting or exceeding traditional off-road applications performance, thereby enabling further electrification of off-road applications. Both numerical and experimental approaches are utilized to validate the functionality of the proposed EHA circuital configuration in four quadrants. Moreover, the actuator functionality at both high and low velocities are considered, which has never been explored in the past due to the limitations on the hydraulic machine driving speed. The good match between the experimental data and the simulation results confirms the potential of the simulation model for sizing such EHA architecture for different actuator sizes, duty cycles, and performance levels.
|
Page generated in 0.0519 seconds