• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The total synthesis of Pseudonocardia sp. quinolone natural products and studies towards the total synthesis of 1β-hydroxyalantolactone

Geddis, Stephen Michael January 2018 (has links)
Natural products have long been known for their broad range of useful therapeutic properties, and have been widely utilised in the field of medicine. This dissertation describes work towards the total synthesis of natural products possessing biological activity in two important areas. The first section concerns the total synthesis of six 4-quinolone natural products, four of which had never been synthesised before. These compounds were originally isolated from a soil bacterium of the genus Pseudonocardia, and bear intriguing structural resemblance to the Pseudomonas Quinolone Signal. This signalling molecule is vital to the quorum sensing activity of the human pathogen Pseudomonas aeruginosa, which is a phenomenon by which it regulates many of its virulence factors. These natural products possess the potential to disrupt this system, hence attenuating the pathogenicity of the bacteria. The routes that were developed are highly divergent, efficiently giving access to multiple natural products from mutual late stage intermediates. Key steps included regioselective epoxidation, palladium-catalysed heterocylisation and acid catalysed 1,3-transposition of an allylic alcohol. In the second section, attention turns towards the total synthesis of the complex sesquiterpene lactone 1β-Hydroxyalantolactone. The compound possesses five stereogenic centres, one of which is quaternary, alongside a challenging tricyclic core scaffold. Previous biological studies have revealed a range of intriguing properties, including anti-inflammatory and anti-tumour activity. The chosen route utilises as its key step the catalytic desymmetrisation of a diene which was itself accessed by Birch reduction chemistry. Whilst the synthesis is as yet incomplete, access was granted to a key intermediate encompassing around half of the stereocentres present in the natural product.
2

Palladium(0)-Catalysed Carbonylative Multicomponent Reactions : Synthesis of Heterocycles and the Application of Quinolinyl Pyrimidines as Enzyme Inhibitors

Åkerbladh, Linda January 2017 (has links)
Palladium-catalysed carbonylative multicomponent reactions have proven useful for the synthesis of structurally diverse compounds. Carbon monoxide serves as an atom-efficient, one-carbon building block, which allows for further structural elaboration of the carbonyl compound. By varying the components of the carbonylative multicomponent reaction, considerable product diversity can readily be attained. However, due to the reluctance to use toxic CO gas, considerable efforts have been directed at exploring non-gaseous approaches. The work described in this thesis has mainly focused on the development of palladium(0)-catalysed, carbonylative multicomponent synthetic methodology, using the non-gaseous CO source molybdenum hexacarbonyl, in the synthesis of heterocycles and other biologically relevant functional groups. The first part of this work describes the development of a non-gaseous carbonylative Sonogashira cross-coupling of bifunctional ortho-iodoanilines and terminal alkynes. Where 4-quinolones were synthesised via a carbonylation/cyclisation sequence. Using a similar synthetic strategy, three different N-cyanobenzamide intermediates were prepared by palladium-catalysed carbonylative couplings of various aryl halides and bromides and cyanamide. The formed intermediates provided a basis for further chemical transformations. First, ortho-iodoanilines were carbonylatively coupled with cyanamide and subsequently cyclised to yield heterocyclic 2-aminoquinazolinones. Next, building on those findings, the same synthetic strategy was applied to ortho-halophenols to provide a highly convenient domino carbonylation/cyclisation method for the preparation of benzoxazinones. The developed method was used to evaluate the efficiency of various non-gaseous CO sources. Third, the palladium-catalysed carbonylative synthesis of N-cyanobenzamides, was used to produce biologically relevant N-acylguanidines with considerable product diversity. Finally, one of the developed carbonylative methodologies was used in the preparation of potential NDH-2 inhibitors based on a quinolinyl pyrimidine scaffold. The prepared compounds were biologically evaluated in terms of inhibition of oxidoreductase NDH-2 and antibacterial activity on Gram-negative bacteria, S. aureus and Mtb. The biological evaluation revealed that some of the quinolinyl pyrimidines exerted inhibitory activity on the NDH-2 enzyme and possessed antibacterial properties. The work described in this thesis has been devoted to the development of non-gaseous one-pot, multicomponent carbonylation/cyclisation and carbonylation/amination reactions. The described methods offer highly attractive synthetic strategies that can be of great value to synthetic and medicinal chemists.

Page generated in 0.0319 seconds