1 |
Impact of Assimilating Airborne Doppler Radar Winds on the Inner-Core Structure and Intensity of Hurricane Ike (2008)Gordon, Ronald Walter 26 July 2011 (has links)
Accurate prediction of Tropical Cyclones (TC) is vital for the protection of life and property in areas that are prone to their destructive forces. While significant improvements have been made in forecasting TC track, intensity remains a challenge. It is hypothesized that accurate TC intensity forecast requires, among other things, an adequate initial description of their inner-core region. Therefore, there must be reliable observations of the inner-core area of the TC and effective data assimilation (DA) methods to ingest these data into the Numerical Weather Prediction (NWP) models. However, these requirements are seldom met at the relatively low resolution of operational global prediction models and the lack of routine observations assimilated in the TC inner-core. This study tests the impacts of assimilating inner-core Airborne Doppler Radar (ADR) winds on the initial structure and subsequent intensity forecast of Hurricane Ike (2008). The 4-dimensional variational (4DVar) and the 3-dimensional variational (3DVar) methods are used to perform DA while the Weather Research and Forecasting (WRF) model is used to perform forecasts. It is found that assimilating data helps to initialize a more realistic inner-core structure using both DA methods. Additionally, the resulting short-term and long-term intensity forecasts are more accurate when data is assimilated versus cases when there is no DA. Additionally, it is found that in some cases the impact of DA lasts up to 12 hours longer with 4DVar versus 3DVar. It is shown that this is because the flow-dependent 4DVar method produces more dynamically and balanced analysis increments compared to the static and isotropic increments of 3DVar. However, the impact of using both methods is minimal in the long-range. The analyses show that at longer forecast range the dynamics of hurricane Ike was influenced more by outer environment features than the inner-core winds.
|
2 |
Assimilation variationnelle de données altimétriques dans le modèle océanique NEMO : Exploration de l'effet des non-linéarités dans une configuration simplifiée à haute résolutionBouttier, Pierre-Antoine 04 February 2014 (has links) (PDF)
Un enjeu majeur des modèles océaniques est de représenter fidèlement les circulations méso- et subméso-échelles afin de simuler leur importante contribution dans la circulation générale et dans le budget énergétique de l'océan. La poursuite de cet objectif se traduit par une augmentation de la résolution spatiale et temporelle à la fois des modèles et des réseaux d'observation de l'océan. Cependant, à ces petites échelles, la dynamique de l'écoulement revêt un caractère fortement turbulent ou non-linéaire. Dans ce contexte, les méthodes actuelles d'assimilation de données (AD), variationnelles en particulier, sont généralement moins performantes que dans un contexte (quasi-) linéaire. L'objectif de cette thèse est d'explorer sous divers aspects le comportement des méthodes variationnelles d'AD dans un modèle d'océan non-linéaire. Pour ce faire, nous avons réalisé une série d'expériences dites jumelles en assimilant des données altimétriques simulées suivant les caractéristiques des satellites altimétriques Jason-1 et SARAL/AltiKA . À l'aide de ces expériences, nous analysons sous différents angles les problématiques posées par les non-linéarités à l'AD. Enfin, nous ouvrons plusieurs pistes d'amélioration de l'efficacité du système d'AD dans ce contexte. Ce travail est basé sur le logiciel de modélisation océanique NEMO, incluant la configuration de bassin océanique turbulent idéalisé SEABASS, à différentes résolutions spatiales. Dans la continuité de la plateforme de recherche en AD avec NEMO, NEMO-ASSIM, nous avons utilisé et contribué au développement de cet ensemble d'outil, comprenant, entre autre, opérateur d'observation, modèles linéaire tangent et adjoint de NEMO, permettant de mener à bien notre étude. Le système d'AD variationnelle utilisé est le logiciel NEMOVAR. Les résultats présentés tentent de lier les échelles caractéristiques des structures d'erreurs d'analyse et l'activité aux petites échelles. Pour ce faire, nous avons utilisé une large gamme de diagnostics, e.g. erreur quadratique moyenne spatiale et temporelle, caractéristiques des fonctions coûts, caractérisation de l'hypothèse linéaire tangente, PSD des champs d'erreurs d'analyse. Nos expériences montrent que le 4DVAR incrémental contrôle efficacement la trajectoire analysée au 1/4° pour de longues fenêtres d'AD (2 mois). Lorsque la résolution augmente, la convergence de l'algorithme apparaît plus lente voire inexistante sous certaines conditions. Cependant, l'algorithme permet encore de réduire convenablement l'erreur d'analyse. Enfin, l'algorithme 3DFGAT se révèle beaucoup moins performant, quelle que soit la résolution. De plus, nous montrons également l'importance de l'adéquation entre la circulation simulée et l'échantillonnage altimétrique, en terme d'échelles spatiales représentées, pour obtenir de meilleures performances. Enfin, nous avons exploré la stratégie de minimisation dite progressive, permettant d'accélérer la convergence du 4DVAR à haute résolution.
|
Page generated in 0.028 seconds