Spelling suggestions: "subject:"5-HT 1receptor 2"" "subject:"5-HT 2receptor 2""
1 |
Lifelong Rodent Model of Tardive Dyskinesia-Persistence After Antipsychotic Drug WithdrawalKostrzewa, Richard M., Brus, Ryszard 16 October 2015 (has links)
Tardive dyskinesia (TD), first appearing in humans after introduction of the phenothiazine class of antipsychotics in the 1950s, is now recognized as an abnormality resulting predominately by long-term block of dopamine (DA) D2 receptors (R). TD is thus reproduced in primates and rodents by chronic administration of D2-R antagonists. Through a series of studies predominately since the 1980s, it has been shown in rodent modeling of TD that when haloperidol or other D2-R antagonist is added to drinking water, rats develop spontaneous oral dyskinesias, vacuous chewing movements (VCMs), after ~3 months, and this TD is associated with an increase in the number of striatal D2-R. This TD persists for the duration of haloperidol administration and another ~2 months after haloperidol withdrawal. By neonatally lesioning dopaminergic nerves in brain in neonatal rats with 6-hydroxydopamine (6-OHDA), it has been found that TD develops sooner, at ~2 months, and also is accompanied by a much higher number of VCMs in these haloperidol-treated lesioned rats, and the TD persists lifelong after haloperidol withdrawal, but is not associated with an increased D2-R number in the haloperidol-withdrawn phase. TD apparently is related in part to supersensitization of both D1-R and serotoninergic 5-HT2-R, which is also a typical outcome of neonatal 6-OHDA (n6-OHDA) lesioning. Testing during the haloperidol-withdrawn phase in n6-OHDA rats displaying TD reveals that receptor agonists and antagonists of a host of neuronal phenotypic classes have virtually no effect on spontaneous VCM number, except for 5-HT2-R antagonists which acutely abate the incidence of VCMs in part. Extrapolating to human TD, it appears that (1)5-HT2-R supersensitization is the crucial alteration accounting for persistence of TD, (2) dopaminergic-perhaps age-related partial denervation-is a risk factor for the development of TD, and (3) 5-HT2-R antagonists have the therapeutic potential to alleviate TD, particularly if/when an antipsychotic D2-R blocker is withdrawn.
|
2 |
Stereotypic Progressions in Psychotic BehaviorKostrzewa, Richard M., Kostrzewa, John P., Kostrzewa, Rose Anna, Kostrzewa, Florence P., Brus, Ryszard, Nowak, Przemyslaw 01 February 2011 (has links)
Dopamine receptor supersensitivity (DARSS) often is invoked as a mechanism possibly underlying disordered thought processes and agitation states in psychiatric disorders. This review is focused on identified means for producing DARSS and associating the role of other monoaminergic systems in modulating DARSS. Dopamine (DA) receptors, experimentally, are prone to become supersensitive and to thus elicit abnormal behaviors when coupled with DA or a receptor agonist. In intact (control) rats repeated DA D1 agonist treatments fail to sensitize D1 receptors, while repeated D 2 agonist treatments sensitize D2 receptors. D2 RSS is attenuated by a lesion with DSP-4 (N-(2-chlorethyl)-N-ethyl-2- bromobenzylamine) in early postnatal ontogeny, indicating that noradrenergic nerves have a permissive effect on D2 DARSS. However, if DSP-4 is co-administered with 5,7-dihydroxytryptamine to destroy serotonin (5-HT) nerves, then D2 RSS is restored. In rats treated early in postnatal ontogeny with the neurotoxin 6-hydroxydopamine to largely destroy DA innervation of striatum, both repeated D1 and D2 agonists sensitize D1 receptors. 5-HT nerves appear to have a permissive effect on D1 DARSS, as a 5-HT lesion reduces the otherwise enhanced effect of a D1 agonist. The series of findings demonstrate that DARSS is able to be produced by repeated agonist treatments, albeit under different circumstances. The involvement of other neuronal phenotypes as modulators of DARSS provides the potential for targeting a variety of sites in the aim to prevent or attenuate DARSS. This therapeutic potential broadens the realm of approaches toward treating psychiatric disorders.
|
3 |
Tardive Dyskinesia: Outcome of Antipsychotic Treatment and Brain Damage?Kostrzewa, Richard M., Kostrzewa, John P., Brus, Ryszard 01 January 2014 (has links)
Tardive dyskinesia (TD), marked by abnormal involuntary movements and frequently expressed as perioral activity, represents an adverse outcome of prolonged antipsychotic therapy, occurring in approximately 5 % of patients per treatment year. Although neuronal mechanisms underlying TD are largely unknown, more recent experimental studies in animal models of TD are providing insight into the neuronal mechanisms associated with TD and implicating newer treatment approaches. It is now evident that a predominance in the ratio of dopamine (DA) D1:D2 receptor (R) activation accounts for induction of perioral movements in rodent models of TD, in nonhuman primate models of TD, and in humans with TD. Experimentally, TD is produced in animal models of TD, in a manner analogous to that by which TD is produced in humans - by continuous and prolonged administration of a DA D2R antagonist (i.e., an antipsychotic drug). More recently, in a rodent model of TD, it has been shown that a lesion of dopaminergic - mainly nigroneostriatal - neurons reduces the time latency for occurrence of TD, also increases the severity of perioral activity, and results in permanence of TD after complete removal of D2R antagonist treatment. The induction of perioral activity is related to DAR supersensitivity but unrelated to numbers of D2R and D2R in the neostriatum, a brain region associated with perioral activity. More apropos, serotoninergic systems are now recognized as having a greater role in effecting perioral activity, and it appears that 5-HT2C receptor antagonists are most effective in abating perioral activity in a rodent model of TD. These processes and mechanisms, topics addressed in this chapter, highlight a newer understanding of mechanisms underlying TD and provide insight into new approaches towards treatment of TD in humans.
|
Page generated in 0.0412 seconds