• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptional Regulatory Mechanisms of Freud-1, a Novel Mental Retardation Gene

Souslova, Tatiana 31 May 2011 (has links)
The mechanisms that govern the repression of 5-HT1A receptor gene expression mediated by a novel mental retardation gene, Freud-1, were examined in HEK293 and SKNSH cells. This study provides a possible mechanism of 5-HT1A receptor gene regulation by Freud-1, which, to mediate its action, recruits Swi/Snf and Sin3A/histone deacetylase (HDAC) complexes in non-neuronal HEK293 cells and Swi/Snf only in neuronal, 5-HT1A receptor-expressing SKNSH cells. Thus, Freud-1 has a dual mechanism of repression depending on cell type: HDAC dependent in HEK293 cells and HDAC independent in SKNSH cells. In addition, I present evidence that Freud-1 is not sumoylated at its consensus sumoylation sites and I present the lipid binding properties of Freud-1 and Freud-1 mutants.
2

Transcriptional Regulatory Mechanisms of Freud-1, a Novel Mental Retardation Gene

Souslova, Tatiana 31 May 2011 (has links)
The mechanisms that govern the repression of 5-HT1A receptor gene expression mediated by a novel mental retardation gene, Freud-1, were examined in HEK293 and SKNSH cells. This study provides a possible mechanism of 5-HT1A receptor gene regulation by Freud-1, which, to mediate its action, recruits Swi/Snf and Sin3A/histone deacetylase (HDAC) complexes in non-neuronal HEK293 cells and Swi/Snf only in neuronal, 5-HT1A receptor-expressing SKNSH cells. Thus, Freud-1 has a dual mechanism of repression depending on cell type: HDAC dependent in HEK293 cells and HDAC independent in SKNSH cells. In addition, I present evidence that Freud-1 is not sumoylated at its consensus sumoylation sites and I present the lipid binding properties of Freud-1 and Freud-1 mutants.
3

Transcriptional Regulatory Mechanisms of Freud-1, a Novel Mental Retardation Gene

Souslova, Tatiana 31 May 2011 (has links)
The mechanisms that govern the repression of 5-HT1A receptor gene expression mediated by a novel mental retardation gene, Freud-1, were examined in HEK293 and SKNSH cells. This study provides a possible mechanism of 5-HT1A receptor gene regulation by Freud-1, which, to mediate its action, recruits Swi/Snf and Sin3A/histone deacetylase (HDAC) complexes in non-neuronal HEK293 cells and Swi/Snf only in neuronal, 5-HT1A receptor-expressing SKNSH cells. Thus, Freud-1 has a dual mechanism of repression depending on cell type: HDAC dependent in HEK293 cells and HDAC independent in SKNSH cells. In addition, I present evidence that Freud-1 is not sumoylated at its consensus sumoylation sites and I present the lipid binding properties of Freud-1 and Freud-1 mutants.
4

Transcriptional Regulatory Mechanisms of Freud-1, a Novel Mental Retardation Gene

Souslova, Tatiana January 2011 (has links)
The mechanisms that govern the repression of 5-HT1A receptor gene expression mediated by a novel mental retardation gene, Freud-1, were examined in HEK293 and SKNSH cells. This study provides a possible mechanism of 5-HT1A receptor gene regulation by Freud-1, which, to mediate its action, recruits Swi/Snf and Sin3A/histone deacetylase (HDAC) complexes in non-neuronal HEK293 cells and Swi/Snf only in neuronal, 5-HT1A receptor-expressing SKNSH cells. Thus, Freud-1 has a dual mechanism of repression depending on cell type: HDAC dependent in HEK293 cells and HDAC independent in SKNSH cells. In addition, I present evidence that Freud-1 is not sumoylated at its consensus sumoylation sites and I present the lipid binding properties of Freud-1 and Freud-1 mutants.

Page generated in 0.0666 seconds