• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machining Chatter in Flank Milling and Investigation of Process Damping in Surface Generation

Ahmadi, Keivan January 2011 (has links)
Although a considerable amount of research exists on geometrical aspects of 5-axis flank milling, the dynamics of this efficient milling operation have not yet been given proper attention. In particular, investigating machining chatter in 5-axis flank milling remains as an open problem in the literature. The axial depth of cut in this operation is typically quite large, which makes it prone to machining chatter. In this thesis, chatter in 5-axis flank milling is studied by developing analytical methods of examining vibration stability, generating numerical simulations of the process, and conducting experimental investigations. The typical application of 5-axis milling includes the machining of thermal resistant steel alloys at low cutting speeds, where the process damping dominates the machining vibration. The results of experimental study in this thesis showed that the effect of process damping is even stronger in flank milling due to the long axial engagement. Accordingly, the first part of the thesis is devoted to studying process damping, and in the second part, the modeling of chatter in flank milling is presented. Linear and nonlinear models have been reported in the literature that account for process damping. Although linear models are easier to implement in predicting stability limits, they could lead to misinterpretation of the actual status of the cut. On the other hand, nonlinear damping models are difficult to implement for stability estimation analytically, yet they allow the prediction of “finite amplitude stability” from time domain simulations. This phenomenon of “finite amplitude stability” has been demonstrated in the literature using numerical simulations. In this thesis, that phenomenon is investigated experimentally. The experimental work focuses on uninterrupted cutting, in particular plunge turning, to avoid unduly complications associated with transient vibration. The experiments confirm that, because of the nonlinearity of the process damping, the transition from fully stable to fully unstable cutting occurs gradually over a range of width of cut. The experimental investigation is followed by developing a new formulation for process damping based on the indentation force model. Then, the presented formulation is used to compute the stability lobes in plunge turning, taking into account the effect of nonlinear process damping. The developed lobes could be established for different amplitudes of vibration. This is a departure from the traditional notion that the stability lobes represent a single boundary between fully stable and fully unstable cutting conditions. Moreover, the process damping model is integrated into the Multi-Frequency Solution and the Semi Discretization Method to establish the stability lobes in milling. The basic formulations are presented along with comparisons between the two approaches, using examples from the literature. A non-shallow cut is employed in the comparisons. Assessing the performance of the two methods is conducted using time domain simulations. It is shown that the Semi Discretization Method provides accurate results over the whole tested range of cutting speed, whereas higher harmonics are required to achieve the same accuracy when applying the Multi Frequency Solution at low speeds. Semi Discretization method is modified further to calculate the stability lobes in flank milling with tools with helical teeth. In addition to the tool helix angle and long axial immersion, the effect of instantaneous chip thickness on the cutting force coefficients is considered in the modified formulation of Semi Discretization as well. Considering the effect of chip thickness variation on the cutting force coefficients is even more important in the modeling of 5-axis flank milling, where the feedrate, and consequently the chip thickness, varies at each cutter location. It also varies along the tool axis due to the additional rotary and tilt axis. In addition to the feedrate, the tool and workpiece engagement geometry varies at each cutter location as well. The actual feedrate at each cutter location is calculated by the dynamic processing of the toolpath. The tool and workpiece engagement geometry is calculated analytically using the parametric formulation of grazing surface at the previous and current passes. After calculating the instantaneous chip thickness and tool/workpiece engagement geometry, they are integrated into the Semi Discretization Method in 5-axis flank milling to examine the stability of vibration at each cutter location. While the presented chatter analysis results in establishing stability lobes in 3-axis flank milling, it results in developing a novel approach in presenting the stability of the cut in 5-axis flank milling. The new approach, namely “stability maps”, determines the unstable cutter locations of the toolpath at each spindle speed. The accuracy of established 3-axis flank milling stability lobes and 5-axis stability maps is verified by conducting a set of cutting experiments and numerical simulations.
2

Machining Chatter in Flank Milling and Investigation of Process Damping in Surface Generation

Ahmadi, Keivan January 2011 (has links)
Although a considerable amount of research exists on geometrical aspects of 5-axis flank milling, the dynamics of this efficient milling operation have not yet been given proper attention. In particular, investigating machining chatter in 5-axis flank milling remains as an open problem in the literature. The axial depth of cut in this operation is typically quite large, which makes it prone to machining chatter. In this thesis, chatter in 5-axis flank milling is studied by developing analytical methods of examining vibration stability, generating numerical simulations of the process, and conducting experimental investigations. The typical application of 5-axis milling includes the machining of thermal resistant steel alloys at low cutting speeds, where the process damping dominates the machining vibration. The results of experimental study in this thesis showed that the effect of process damping is even stronger in flank milling due to the long axial engagement. Accordingly, the first part of the thesis is devoted to studying process damping, and in the second part, the modeling of chatter in flank milling is presented. Linear and nonlinear models have been reported in the literature that account for process damping. Although linear models are easier to implement in predicting stability limits, they could lead to misinterpretation of the actual status of the cut. On the other hand, nonlinear damping models are difficult to implement for stability estimation analytically, yet they allow the prediction of “finite amplitude stability” from time domain simulations. This phenomenon of “finite amplitude stability” has been demonstrated in the literature using numerical simulations. In this thesis, that phenomenon is investigated experimentally. The experimental work focuses on uninterrupted cutting, in particular plunge turning, to avoid unduly complications associated with transient vibration. The experiments confirm that, because of the nonlinearity of the process damping, the transition from fully stable to fully unstable cutting occurs gradually over a range of width of cut. The experimental investigation is followed by developing a new formulation for process damping based on the indentation force model. Then, the presented formulation is used to compute the stability lobes in plunge turning, taking into account the effect of nonlinear process damping. The developed lobes could be established for different amplitudes of vibration. This is a departure from the traditional notion that the stability lobes represent a single boundary between fully stable and fully unstable cutting conditions. Moreover, the process damping model is integrated into the Multi-Frequency Solution and the Semi Discretization Method to establish the stability lobes in milling. The basic formulations are presented along with comparisons between the two approaches, using examples from the literature. A non-shallow cut is employed in the comparisons. Assessing the performance of the two methods is conducted using time domain simulations. It is shown that the Semi Discretization Method provides accurate results over the whole tested range of cutting speed, whereas higher harmonics are required to achieve the same accuracy when applying the Multi Frequency Solution at low speeds. Semi Discretization method is modified further to calculate the stability lobes in flank milling with tools with helical teeth. In addition to the tool helix angle and long axial immersion, the effect of instantaneous chip thickness on the cutting force coefficients is considered in the modified formulation of Semi Discretization as well. Considering the effect of chip thickness variation on the cutting force coefficients is even more important in the modeling of 5-axis flank milling, where the feedrate, and consequently the chip thickness, varies at each cutter location. It also varies along the tool axis due to the additional rotary and tilt axis. In addition to the feedrate, the tool and workpiece engagement geometry varies at each cutter location as well. The actual feedrate at each cutter location is calculated by the dynamic processing of the toolpath. The tool and workpiece engagement geometry is calculated analytically using the parametric formulation of grazing surface at the previous and current passes. After calculating the instantaneous chip thickness and tool/workpiece engagement geometry, they are integrated into the Semi Discretization Method in 5-axis flank milling to examine the stability of vibration at each cutter location. While the presented chatter analysis results in establishing stability lobes in 3-axis flank milling, it results in developing a novel approach in presenting the stability of the cut in 5-axis flank milling. The new approach, namely “stability maps”, determines the unstable cutter locations of the toolpath at each spindle speed. The accuracy of established 3-axis flank milling stability lobes and 5-axis stability maps is verified by conducting a set of cutting experiments and numerical simulations.
3

Řešení technologie při výrobě odlitku v malé strojírenské firmě / Solution technology of production part cast in condition small engineering company

Gulda, Jiří January 2011 (has links)
The dissertation work focuses on the design and optimization of the castings and foundry technology and the production a particular model for the casting. The technology proposal and the pattern set building in 3D using CAD system. The casting simulation in CAE MAGMAsoft® system and evaluation of the proposed casting technology. Production of the pattern using CAD/CAM software and CNC machine tools with a focus on 3-axis and 5-axis machining. The economic benefits for the company.
4

Modélisation et simulation du procédé de prépolissage automatique sur centre d'usinage 5 axes / Modeling and simulation of automatic pre-polishing process on 5-axis machining center

Guiot, Anthony 06 December 2012 (has links)
La réalisation de formes complexes comme les moules ou les prothèses médicales nécessite l’utilisation d’opérations de super finition pour obtenir de faibles défauts géométriques, pouvant aller jusqu’au poli-miroir. Ces opérations de pré-polissage et de polissage sont encore régulièrement réalisées manuellement. En effet, malgré des avantages en termes de répétabilité, de productivité et de qualité géométrique, les méthodes de polissage automatique sont peu utilisées car elles nécessitent une mise au point importante. Les travaux de recherche présentés participent à la maîtrise du procédé de polissage automatique tout en contrôlant la qualité géométrique des pièces. Pour parvenir à cette maîtrise, un outil de simulation de l’enlèvement de matière est mis en place. Cet outil permet de simuler l’enlèvement de matière au cours d’une opération de prépolissage réalisée sur centre d’usinage 5 axes. Il se base sur un modèle du contact obtenu entre l’outil de pré-polissage et la pièce, ainsi que sur un modèle du pouvoir abrasif intégrant l’usure et l’encrassement du disque. Cette simulation permet de vérifier la régularité de l’abrasion sur une surface et d’identifier les zones pouvant faire apparaitre des défauts macro-géométriques importants. Une méthode est également proposée pour compenser les variations du pouvoir abrasif au cours du temps. La compensation s’effectue en optimisant les consignes de vitesse d’avance et/ou de fréquence de broche le long de la trajectoire. Cette méthode de pilotage permet d’obtenir un taux d’enlèvement de matière plus constant et ainsi de réduire les défauts géométriques générés pendant une opération de prépolissage. / Complex shapes such as medical implants or injection molds require the use of super-finishing operations to minimize geometrical defects, down to mirror effect finish. These pre-polishing and polishing operations are still regularly performed manually by skilled workers. In spite of advantages in terms of repeatability, productivity and geometrical quality, automatic polishing methods are not widely used because they require systematic and significant developments. The present work contributes to enhance the automatic polishing process compared to the geometric quality of the parts. To achieve this control, a numerical simulation of material removal is implemented. This software simulates the material removal during a pre-polishing operation performed on 5-axis machining center. It is based on a contact model obtained between the pre-polishing tool and the part, as well as an abrasive model including wear of the disc. This simulation allows to check the uniformity of the material removal on the surface and to identify potential areas where macro-geometric defects appear. A method is also proposed to balance variations of the abrasive efficiency. The correction is performed by optimizing the federate and/or the spindle speed along the tool path. This method provides a constant material removal and reduces the geometrical deviations generated during pre-polishing operations.
5

Racionalizace obrábění skříní převodovek / The racionalization of machining of gearboxes

Sádlo, Dominik January 2020 (has links)
Content of the thesis is the proposal of new technology using machining centres, including five controlled axis. Benefit of implementation the new nechnology is investigated at machining example, which is the gear housing of a single stage gearbox, manufactured in the company. In the first part of the thesis, the general properties of gearboxes and their housings are analyzed, as well as the procedure of the current proces of the machining representative. In practical part of the thesis is proposed necessary tool equipment and jig equipment, needed for machining of the part. After that are analyzed and filled in time studies, provided by manufacturers of machining centres. On the bases of these studies, were calculated operating times and operating costs per one piece of the housing. In the part of technical and economical evaluation is calculated the return of initial investment, including costs for byuing new machining cente and cutting tools equipment. Finaly are evaluated the overal benefits of the new technology, given the needs of the company.
6

Définition analytique des surfaces de denture et comportement sous charge des engrenages spiro-coniques / Analytical definition of tooth surfaces and loaded behavior of spiral bevel gears

Alves, Joël Teixeira 30 May 2012 (has links)
La conception des engrenages spiro-coniques reste encore très complexe de nos jours car la géométrie des dentures, et donc les performances cinématiques, découle du mode de fabrication de ce type d’engrenage. Le taillage est lié à deux constructeurs principaux : Gleason et Klingelnberg. De nombreux paramètres de réglage des machines influencent directement les surfaces de denture, leur optimisation n’est donc pas intuitive. Avec les progrès réalisés cette dernière décennie par les machines d’usinage à commande numérique et la FAO (Fabrication Assistée par Ordinateur), il devient possible de fabriquer des engrenages spiro-coniques de bonne qualité sur une machine 5 axes. Un modèle numérique a été développé pour générer une géométrie simplifiée de type Gleason, usinée par la suite avec une machine 5 axes. Une étude de métrologie, permettant de comparer les dents usinées avec les modèles CAO, a ensuite été réalisée pour prouver que l’usinage par une machine 5 axes peut être une alternative aux méthodes de taillage classiques. De nouveaux types de géométrie peuvent donc être proposés, qui ne pouvaient pas être envisagés par les moyens de fabrication classiques. Une géométrie basée sur la théorie des développantes sphériques, combinée à une spirale logarithmique a été développée, puis usinée. De plus, des corrections de bombé ou de profil peuvent être définies afin d’éviter les contacts en bords de denture. Ce type de géométrie analytique offre des possibilités plus simples d’optimisation de l’engrènement. L'optimisation des surfaces peut être réalisée à l’aide du modèle d’engrènement quasi-statique sous charge développé dans le cadre de cette thèse. L’environnement de l’engrenage est pris en compte dans la simulation : déformation des arbres, des dentures et de leurs supports (jantes et voiles) ainsi que les déformations locales de contact. La méthode des coefficients d’influence est utilisée pour résoudre le partage des charges entre toutes les dents instantanément en contact. Une méthode originale, utilisant sur un seul calcul élément finis et la définition de bases de fonctions, permet de calculer rapidement les flexions de denture dans leur environnement. Les déformations de contacts sont, quant à elles, obtenues par une méthode analytique, basée sur les théories de Boussinesq. De plus, des défauts d’assemblage peuvent être intégrés entre le pignon et la roue spiro-conique. Afin de valider les modèles numériques développés, un banc d’essai a été mis en place, permettant la mesure de l'erreur de transmission et la visualisation des portées. Le banc d’essai est intégré dans une fraiseuse numérique 3 axes : le pignon est monté dans la broche de la fraiseuse, le reste du banc étant bridé sur son plateau. Ainsi, des défauts de montage peuvent être appliqués facilement et précisément. / The design of spiral bevel gears is still very complex nowadays because the tooth geometry, and thus the kinematic performance, come from the manufacturing process of this type of gear. The cutting is related to two major manufacturers: Gleason and Klingelnberg. Many machine settings drive directly the shape of teeth surfaces, their optimization is therefore not intuitive. Due to the progress made during the last decade by the CNC machines and the CAM (Computer Aided Manufacturing) softwares, it becomes possible to manufacture spiral bevel gears of quite correct quality on a 5-axis milling machine. A numerical model was developed in order to generate a simplified type Gleason geometry. This last was then manufactured with a 5-axis milling machine. A metrological study, comparing the teeth obtained with the CAD models, was then carried out to prove that the manufacturing by 5-axis milling machine can be an alternative to conventional cutting methods. New types of geometry can be then proposed, which could not be considered by the conventional methods of manufacturing. Geometry based on the theory of spherical involutes, combined with a logarithmic spiral was developed and then manufatured. In addition, profile and crowning modifications can be defined to avoid the tooth edge contacts. This type of analytical geometry offers simpler possibilities for optimizing the meshing. The surface optimization can be achieved using the quasi-static meshing model under load developed in the context of this thesis. The surroundings of the gear are taken into account in the simulation: deformation of the shafts, of the gears and their supports (rims for example) as well as the local contact deformations. The influence coefficient method is used to solve the load sharing between all the teeth instantaneously in contact. An original method, using only one finite element computation and the definition of a set of functions, can quickly calculate the teeth bending, taking into account their surroundings. The contact deformations are obtained with an analytical method, based on Boussinesq theories. In addition, meshing defects can be integrated between the spiral beval pinion and gear. To validate the numerical model, a test bench was achieved, allowing the measurement of the loaded transmission error and the visualization of the contact patterns. The test bench is integrated inside a numerical 3-axis milling machine: the pinion is mounted in the spindle of the milling machine, when the base of the bench is clamped on its plate. Thus, assembly errors can be imposed easily and accurately.

Page generated in 0.1052 seconds