1 |
Synthesis and characterization of chromium-doped ordered porous zirconia by polystyrene templateLin, I-chi 25 August 2009 (has links)
Zirconia is a metal oxide with high band gap. It is commonly used as catalysts in many industrial practices. In recent years, its high-energy-gap value and redox properties also render it as an excellent photocatalyst, which can eliminate or reduce a variety of pollutants. The purpose of this work is to prepare and characterize the chromium-doped ordered porous zirconia. The main purpose of doping chromium into the zirconia is to avoid the Martensitic transformation of zirconia under high temperatures by volume change and pore structure change, thus reducing the cracking and inferior mechanical properties.
With emulsion-free polymerization for the synthesis of polystyrene (PS) particles, controlling the particle diameter less than 200 nm is possible. A polystyrene template is thus produced by gravity sedimentation of these PS particles. Final Cr-doped zirconia is obtained by infiltration of a precursor solution, a mixture consisting of zirconium n-propoxide, n-propanol, acetylacetone, and chromium (III) nitrate nonahydrate, into the PS template, followed by drying and calcination at elevated temperatures. A systematic study on the pore structure and physical properties by XRD and Raman is conducted by varying the precursor concentration, the calcination temperature, and the dopant concentration. The results show that, unlike the pure zirconia, the pore structure of Cr-doped zirconia remains stable under higher calcination temperatures. Without any phase transformation, the doped Cr, evidenced from the EDS mapping, tends to help stabilize the zirconia at tetragonal phase. The average surface area and pore diameter of Cr-doped zirconia from BET measurement are 19 ~ 21 m2/g and 25 -45 nm, far better than the bulk zirconia. The improved surface properties are also confirmed by SEM observations.
|
Page generated in 0.0337 seconds