• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Group actions on amorphous sets and reducts of coloured ransom graphs

Tarzi, Sam January 2003 (has links)
No description available.
2

A classification of toral and planar attractors and substitution tiling spaces

McCann, Sheila Margaret January 2013 (has links)
We focus on dynamical systems which are one-dimensional expanding attractors with a local product structure of an arc times a Cantor set. We define a class of Denjoy continua and show that each one of the class is homeomorphic to an orientable DA attractor with four complementary domains which in turn is homeomorphic to a tiling space consisting of aperiodic substitution tilings. The planar attractors are non-orientable as is the Plykin attractor in the 2-sphere which we describe. We classify these attractors and tiling spaces up to homeomorphism and the symmetries of the underlying spaces up to isomorphism. The criterion for homeomorphism is the irrational slope of the expanding eigenvector of the defining matrix from whence the attractor was formed whilst the criterion for isomorphism is the matrix itself. We find that the permutation groups arising from the 4 'special points' which serve as the repelling set of an attractor are isomorphic to subgroups of S[subscript 4]. Restricted to these 4 special points, we show that the isotopy class group of the self-homeomorphisms of an attractor, and likewise those of a tiling space, is isomorphic to Z ⊕ Z[subscript 2].
3

The density of algebraic points in sets definable in o-minimal structures

Butler, Lee A. January 2012 (has links)
This thesis concerns the study of the density of rational and algebraic points in the transcendental part of sets that are definable in o-minimal structures. An o-minimal version of a reparametrisation result of Yosef Yomdin is proved, Yomdin's result being the prototype of a result used to prove the Pila-Wilkie theorem. Subsequently we concentrate on a specific o-minimal structure, the real exponential field, and prove some partial results towards a conjecture of Wilkie concerning the particular paucity of rational points in sets definable in this structure. 2.
4

Two-point sets

Chad, Ben January 2010 (has links)
This thesis concerns two-point sets, which are subsets of the real plane which intersect every line in exactly two points. The existence of two-point sets was first shown in 1914 by Mazukiewicz, and since this time, the properties of these objects have been of great intrigue to mathematicians working in both topology and set theory. Arguably, the most famous problem about two-point sets is concerned with their so-called "descriptive complexity"; it remains open, and it appears to be deep. An informal interpretation of the problem, which traces back at least to Erdos, is: The term "two-point" set can be defined in a way that it is easily understood by someone with only a limited amount of mathemat- ical training. Even so, how hard is it to construct a two-point set? Can one give an effective algorithm which describes precisely how to do so? More formally, Erdos wanted to know if there exists a two-point set which is a Borel subset of the plane. An essential tool in showing the existence of a two-point set is the Axiom of Choice, an axiom which is taken to be one of the basic truths of mathematics.
5

Optimal stopping problems for the maximum process

Ott, Curdin January 2013 (has links)
A cornerstone in the theory of optimal stopping for the maximum process is a result known as Peskir’s maximality principle. It has proved to be a powerful tool to solve optimal stopping problems involving the maximum process under the assumption that the driving process X is a time-homogeneous diffusion. In this thesis we adapt Peskir’s maximality principle to allow for X a spectrally negative L´evy processes, thereby providing a general method to approach optimal stopping problems for the maximum process driven by spectrally negative L´evy processes. We showcase this by explicitly solving three optimal stopping problems and the capped versions thereof. Here capped version means a modification of the original optimal stopping problem in the sense that the payoff is bounded from above by some constant. Moreover, we discuss applications of the aforementioned optimal stopping problems in option pricing in financial markets whose price process is driven by an exponential spectrally negative L´evy process. Finally, to further highlight the applicability of our general method, we present the solution to the problem of predicting the time at which a positive self-similar Markov process with one-sided jumps attains its maximum or minimum.

Page generated in 0.0185 seconds