• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects of graph colouring

Williams, Jini January 2004 (has links)
No description available.
2

Random geometric graphs : colouring and related topics

Müller, Tobias January 2006 (has links)
No description available.
3

Graph polynomials and the discrete Fourier transform

Goodall, A. J. January 2003 (has links)
No description available.
4

List-colourings of near-outerplanar graphs

Hetherington, Timothy J. January 2007 (has links)
A list-colouring of a graph is an assignment of a colour to each vertex v from its own list L(v) of colours. Instead of colouring vertices we may want to colour other elements of a graph such as edges, faces, or any combination of vertices, edges and faces. In this thesis we will study several of these different types of list-colouring, each for the class of a near-outerplanar graphs. Since a graph is outerplanar if it is both K4-minor-free and K2,3-minor-free, then by a near-outerplanar graph we mean a graph that is either K4-minor-free or K2,3-minor-free. Chapter 1 gives an introduction to the area of graph colourings, and includes a review of several results and conjectures in this area. In particular, four important and interesting conjectures in graph theory are the List-Edge-Colouring Conjecture (LECC), the List-Total-Colouring Conjecture (LTCC), the Entire Colouring Conjecture (ECC), and the List-Square-Colouring Conjecture (LSCC), each of which will be discussed in Chapter 1. In Chapter 2 we include a proof of the LECC and LTCC for all near-outerplanar graphs. In Chapter 3 we will study the list-colouring of a near-outerplanar graph in which vertices and faces, edges and faces, or vertices, edges and face are to be coloured. The results for the case when all elements are to be coloured will prove the ECC for all near-outerplanar graphs. In Chapter 4 we will study the list-colouring of the square of a K4-minor-free graph, and in Chapter 5 we will study the list-colouring of the square of a K2,3-minor-free graph. In Chapter 5 we include a proof of the LSCC for all K2,3-minor-free graphs with maximum degree at least six.

Page generated in 0.0212 seconds