• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Στοιχεία από τη θεωρία αντιμεταθετικών δακτυλίων

Δακουρά, Μαρία 20 October 2010 (has links)
Οι αντιμεταθετικοί δακτύλιοι έχουν την προέλευσή τους από τη θεωρία αριθμών και από την αλγεβρική γεωμετρία στον 19ο αιώνα. Σήμερα είναι ιδιαίτερα σημαντικοί και έχουν ενδιαφέρουσα επίδραση στην αλγεβρική γεωμετρία και στην θεωρία αριθμών, χρησιμοποιώντας μεθόδους αντιμεταθετικής άλγεβρας. Εδώ περιγράφουμε τις βασικές μεθόδους και κάνουμε τα πρώτα βήματα σε αυτό το θέμα. Στο εξής όλοι οι δακτύλιοι θα είναι αντιμεταθετικοί, εκτός αν θεωρήσουμε κάτι άλλο. Το κεντρικό θέμα της αξιωματικής ανάπτυξης της γραμμικής άλγεβρας είναι ένας διανυσματικός χώρος επί ενός σώματος. Η αξιωματοποίηση της γραμμικής άλγεβρας, η οποία επιτεύχθηκε το 1920, μορφοποιήθηκε σε μια μεγάλη έκταση, από την επιθυμία να εισάγουμε γεωμετρικές έννοιες στη μελέτη συγκεκριμένων κλάσεων των συναρτήσεων στην ανάλυση. Κατ’ αρχάς, ασχοληθήκαμε αποκλειστικά με τους διανυσματικούς χώρους των πραγματικών αριθμών ή των μιγαδικών αριθμών. Η έννοια ενός module είναι μια άμεση γενίκευση ενός διανυσματικού χώρου. Η γενίκευση αυτή επιτυγχάνεται απλά αντικαθιστώντας το σώμα των συντελεστών διά ενός δακτυλίου. Ο ευκολότερος τρόπος για να ορίσουμε ένα module μπορούμε να πούμε ότι είναι ένα αλγεβρικό σύστημα το οποίο ικανοποιεί τα ίδια αξιώματα όπως ένας διανυσματικός χώρος εκτός του ότι οι συντελεστές ανήκουν σ’ ένα δακτύλιο R με μονάδα αντί ενός σώματος F. Αυτή η φαινομενικά σεμνή γενίκευση οδηγεί σε μια αλγεβρική δομή η οποία είναι μεγίστης σημασίας. Ιστορικά ο πρώτος δακτύλιος που μελετήθηκε ήταν ο δακτύλιος ℤ των ακεραίων, ο όρος “δακτύλιος” πρωτοχρησιμοποιήθηκε από τον Hilbert (1897) στο “Zahlbericht” του για έναν δακτύλιο αλγεβρικών ακεραίων. Στο ℤ κάθε δακτύλιος είναι κύριος. Στην πραγματικότητα τα ιδεώδη είχαν πρώτα εισαχθεί (από Kummer) ως “ιδεώδεις αριθμοί” στους δακτυλίους αλγεβρικών ακεραίων οι οποίοι εστερούντο μοναδικής παραγοντοντοποίησης (unique factorization). Στο ℤ μπορούμε από δύο αριθμούς a,b να ορίσουμε τον μέγιστο κοινό διαιρέτη (ΜΚΔ) αυτών, (a,b), το γινόμενό τους ab και το ελάχιστο κοινό πολλαπλάσιο (ΕΚΠ) αυτών, [a,b]. Αυτές οι πράξεις αντιστοιχούν σε πράξεις ιδεωδών σε κάθε δακτύλιο. / Commutative ring has its origins in number theory its origins in number theory and algebraic geometry in the 19th century. Today it is of particular importance in algebraic geometry, and there has been an interesting interaction of algebraic geometry and number theory, using the methods of commutative algebra. Here we can do no more than describe the basic techniques and take the first steps in the first steps in the subject. Throughout this chapter all rings will be commutative, unless otherwise stated. The central concept of the axiomatic development of linear algebra is that of a vector space over a field. The axiomatization of linear algebra, which was effected in the 1920’s, was motivated to a large extend by the desire to introduce geometric notions in the study of certain classes of functions in analysis. At first one dealt exclusively with vector spaces over the reals or the complexes. It soon became apparent that this restriction was rather artificial , since a large body of the results depended only on the solution of linear equations and thus were valid for arbitrary fields. This led to the study of vactor spaces over arbitrary fields and this is what presently constitutes linear algebra. The concept of a module is an immediate generalization of that of a vector space. One obtains the generalization by simply replacing the underlying field by any ring.In the first place, one learns from experience that the internal logical structure of mathematics strongly urges the pursuit of such ‘natural’ generalizations. These often result in an improved insight into the theory which led to them in the first place. The easiest way to define a module is to say that it is an algebraic system that satisfies the same axioms as a vector space except that the scalars come from a ring R with a 1 instead of from a field F. This seemingly modest generalization leads to an algebraic structure that is of the greatest importance. We use here the term R-module, it being understood that the scalars are written on the left. Historically the first ring to studied was the ring Z of integers, the term ‘ring’ was first used by Hilbert (1897) in his ‘Zahlbericht’ for a ring of algebraic integers. In Z every ideal is principal, in fact ideals were first introduced (by Kummer) as ‘ideal numbers’ in rings of algebraic integers which lacked unique factorization. In Z we can from any two numbers a,b form their highest common factor (HCF, also greatest common divisor, GCD) (a,b), their product ab and their least common multiple (LCM) [a,b]. These operations correspond to operations on ideals in any ring. Valuation theory may be described as the study of divisibility (in commutative rings) in its purest form, but that is only one aspect. The general formulation leads to the introduction of topological concepts like completion, which provides a powerful tool. It also emphasizes the parallel with the absolute value on the real and complex numbers. After the initial definitions we shall prove the essential uniqueness of the absolute value on R and C, and go on to describe the p-adic numbers, before looking at simple cases of the extension problem.
2

Frames of ideals of commutative f-rings

Sithole, Maria Lindiwe 09 1900 (has links)
In his study of spectra of f-rings via pointfree topology, Banaschewski [6] considers lattices of l-ideals, radical l-ideals, and saturated l-ideals of a given f-ring A. In each case he shows that the lattice of each of these kinds of ideals is a coherent frame. This means that it is compact, generated by its compact elements, and the meet of any two compact elements is compact. This will form the basis of our main goal to show that the lattice-ordered rings studied in [6] are coherent frames. We conclude the dissertation by revisiting the d-elements of Mart nez and Zenk [30], and characterise them analogously to d-ideals in commutative rings. We extend these characterisa-tions to algebraic frames with FIP. Of necessity, this will require that we reappraise a great deal of Banaschewski's work on pointfree spectra, and that of Mart nez and Zenk on algebraic frames. / Mathematical Sciences / M. Sc. (Mathematics)
3

Topics on z-ideals of commutative rings

Tlharesakgosi, Batsile 02 1900 (has links)
The first few chapters of the dissertation will catalogue what is known regarding z-ideals in commutative rings with identity. Some special attention will be paid to z-ideals in function rings to show how the presence of the topological description simplifies z-covers of arbitrary ideals. Conditions in an f-ring that ensure that the sum of z-ideals is a z-ideal will be given. In the latter part of the dissertation I will generalise a result in higher order z-ideals and introduce a notion of higher order d-ideals / Mathematical Sciences / M. Sc. (Mathematics)
4

Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs / Depth, dimension and resolutions in commutative algebra : some effective aspects

Tête, Claire 21 October 2014 (has links)
Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper aux idéaux premiers et ceci afin de manier des objets élémentaires et explicites. Parmi ces objets, figurent les complexes algébriques de Koszul et de Cech dont nous étudions les propriétés cohomologiques grâce à des résultats simples portant sur la cohomologie du totalisé d'un bicomplexe. Dans le cadre de la cohomologie de Cech, nous avons établi la longue suite exacte de Mayer-Vietoris avec un traitement reposant uniquement sur le maniement des éléments. Une autre notion importante est celle de dimension de Krull. Sa caractérisation en termes de monoïdes bords permet de montrer de manière expéditive le théorème d'annulation de Grothendieck en cohomologie de Cech. Nous fournissons également un algorithme permettant de compléter un polynôme homogène en un h.s.o.p.. La profondeur est intimement liée à la théorie des résolutions libres/projectives finies, en témoigne le théorème de Ferrand-Vasconcelos dont nous rapportons une généralisation due à Jouanolou. Par ailleurs, nous revenons sur des résultats faisant intervenir la profondeur des idéaux caractéristiques d'une résolution libre finie. Nous revisitons, dans un cas particulier, une construction due à Tate permettant d'expliciter une résolution projective totalement effective de l'idéal d'un point lisse d'une hypersurface. Enfin, nous abordons la théorie de la régularité en dimension 1 via l'étude des idéaux inversibles et fournissons un algorithme implémenté en Magma calculant l'anneau des entiers d'un corps de nombres. / This Commutative Algebra thesis focuses mainly on the depth theory. We try to provide an approach without noetherian hypothesis in order to escape prime ideals and to handle only basic and explicit concepts. We study the algebraic complexes of Koszul and Cech and their cohomological properties by using simple results on the cohomology of the totalization of a bicomplex. In the Cech cohomology context we established the long exact sequence of Mayer-Vietoris only with a treatment based on the elements. Another important concept is that of Krull dimension. Its characterization in terms of monoids allows us to show expeditiously the vanishing Grothendieck theorem in Cech cohomology.We also provide an algorithm to complete a omogeneous polynomial in a h.s.o.p.. The depth is closely related to the theory of finite free/projective resolutions. We report a generalization of the Ferrand-Vasconcelos theorem due to Jouanolou. In addition, we review some results involving the depth of the ideals of expected ranks in a finite free resolution.We revisit, in a particular case, a construction due to Tate. This allows us to give an effective projective resolution of the ideal of a point of a smooth hypersurface. Finally, we discuss the regularity theory in dimension 1 by studying invertible ideals and provide an algorithm implemented in Magma computing the ring of integers of a number field.

Page generated in 0.0123 seconds