• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 14
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Good and bad at numbers : typical and atypical development of number processing and arithmetic

Iuculano, T. January 2012 (has links)
This thesis elucidates the heterogeneous nature of mathematical skills by examining numerical and arithmetical abilities in typical, atypical and exceptional populations. Moreover, it looks at the benefits of intervention for remediating and improving mathematical skills. First, we establish the nature of the ‘number sense’ and assess its contribution to typical and atypical arithmetical development. We confirmed that representing and manipulating numerosities approximately is fundamentally different from the ability to manipulate them exactly. Yet only the exact manipulation of numbers seems to be crucial for the development of arithmetic. These results lead to a better characterization of mathematical disabilities such as Developmental Dyscalculia and Low Numeracy. In the latter population we also investigated more general cognitive functions demonstrating how inhibition processes of working memory and stimulusmaterial interacted with arithmetical attainment. Furthermore, we examined areas of mathematics that are often difficult to grasp: the representation and processing of rational numbers. Using explicit mapping tasks we demonstrated that well-educated adults, but also typically developing 10 year olds and children with low numeracy have a comprehensive understanding of these types of numbers. We also investigated exceptional maths abilities in a population of children with Autism Spectrum Disorder (ASD) demonstrating that this condition is characterized by outstanding arithmetical skills and sophisticated calculation strategies, which are reflected in a fundamentally different pattern of brain activation. Ultimately we looked at remediation and learning. Targeted behavioural intervention was beneficial for children with low numeracy but not in Developmental Dyscalculia. Finally, we demonstrated that adults’ numerical performance can be enhanced by neural stimulation (tDCS) to dedicated areas of the brain. This work sheds light on the entire spectrum of mathematical skills from atypical to exceptional development and it is extremely relevant for the advancing of the field of mathematical cognition and the prospects of diagnosis, education and intervention.
2

Models of arithmetic

Lessan, Hamid January 1978 (has links)
A-saturated and recursively saturated structures were introduced and extensively studied by Wilmers [Wi] and Barwise - Schlipf [B & S] respectively. These structures appear naturally in the study of models of arithmetic and their special properties help us to solve some problems regarding these models. Let PA denote the set of Peano's axioms and Ma model of PA. In Chapter 2 we show the existence of end extensions of M which are A-saturated, using this we prove some results regarding the initial segments of M and answer a question of McAloon concerning the position of the class of ∆n-definable elements of M. In Chapter 3 we look at the substructure of M determined by its set of ∑n-definable elements and the initial segment of M determined by this set. It turns out that these structures are models of substantial parts of PA and that the set of standard integers is definable in them. In the second part of this Chapter we give a 'partial' solution to a problem of Gaifman concerning arithmetical structures. In Chapter 4 we consider the initial segments of a model K of the set of π1-consequences of PA determined by an element of K and show that in certain circumstances these initial segments are A-saturated; using this we generalize some results of Chapter 2 to models of weaker systems than PA. In Chapter 5 we continue to exploit the versatility of the A-saturated structures introduced in Chapter 4, showing the existence of approximating chains of models of PA for certain models of the set of π2-consequences of PA. In the last section of this Chapter we introduce a useful class of initial segments of M and prove some results concerning the number of isomorphic initial segments of an initial segment I of M and its relation to the number of automorphisms of I, when M is countable. Certain results concerning the relative position of the classes of ∑n -definable elements of a model of PA can be found in 3.1 . and 4.2.
3

The complexity of counting and randomised approximation

Bordewich, Magnus January 2003 (has links)
No description available.
4

The weak pigeonhole principle in models of bounded arithmetic

Thapen, Neil January 2002 (has links)
No description available.
5

Generalised Frobenius numbers : geometry of upper bounds, Frobenius graphs and exact formulas for arithmetic sequences

Mohammed, Dilbak January 2015 (has links)
Given a positive integer vector ${\ve a}=(a_{1},a_{2}\dots,a_k)^t$ with \bea 1< a_{1}<\cdots<a_{k}\, \quad \text{and}\quad \gcd(a_{1},\ldots,a_{k})=1 \,. \eea The Frobenius number of the vector ${\ve a}$, $\frob_k({\ve a})$, is the largest positive integer that cannot be represented as $\sum\limits_{i=1}^{k}a_{i}x_{i}$, where $x_{1},\ldots,x_{k}$ are nonnegative integers. We also consider a generalised Frobenius number, known in the literature as the $s$-Frobenius number, $\frob_{s}(a_{1},a_{2},\ldots,a_{k})$, which is defined to be the largest integer that cannot be represented as $\sum\limits_{i=1}^{k}a_{i}x_{i}$ in at least $s$ distinct ways. The classical Frobenius number corresponds to the case $s=1$. The main result of the thesis is the new upper bound for the $2$-Frobenius number, \be \label{equ:UB} \frob_2(a_{1},\ldots,a_{k})\leq \frob_1(a_{1},\ldots,a_{k}) +2\left(\frac {(k-1)!}{{2(k-1) \choose k-1}}\right)^{1/(k-1)} \left(a_{1}\cdots a_{k}\right)^{1/(k-1)}\,, \ee that arises from studying the bounds for the quantity $ \big(\frob_s({\ve a})-\frob_1({\ve a})\big)\left(a_{1}\cdots a_{k}\right)^{-1/(k-1)}\,. $ The bound (\ref{equ:UB}) is an improvement, for $s=2$, on a bound given by Aliev, Fukshansky and Henk \cite{aliev2011generalized}. Our proofs rely on the geometry of numbers. By using graph theoretic techniques, we also obtain an explicit formula for the $2$-Frobenius number of the arithmetic progression $a,a+d,\ldots a+nd$ (i.e. the $a_{i}$'s are in an arithmetic progression) with $\gcd(a,d)=1$ and $1\leq d<a$. \be \label{2} \frob_{2}(a,a+d,\ldots a+nd)=a\left\lfloor\frac{a}{n}\right\rfloor+d(a+1)\,, \quad n \in \{2,3\}. \ee % This result generalises Roperts's result \cite{Roberts} for the Frobenius number of general arithmetic sequences. In the course of our investigations we derive a formula for the shortest path and the distance between any two vertices of a graph associated with the positive integers $a_{1},\ldots,a_{k}$. Based on our results, we observe a new pattern for the $2$-Frobenius number of general arithmetic sequences $a,a+d,\dots,a+nd$, $\gcd(a,d)=1$, which we state as a conjecture. Part of this work has appeared in \cite{Alievdistance}.
6

Affective, demographic and educational predictors of numeracy performance in undergraduate students

Thompson, Ross A. G. January 2015 (has links)
No description available.
7

論庾信駢文. v.1 / Lun Yu Xin pian wen. v.1

January 1971 (has links)
Thesis (M.A.)--香港中文大學. / Manuscript. / Includes bibliographical references (p. 1-5 (4th group)). / Thesis (M.A.)--Xianggang Zhong wen da xue. / 自 序 / 例 言 / Chapter 第一編 --- 緒論 / Chapter 第一章 --- 駢文之名義及其特質  --- p.1 / Chapter 第二章 --- 駢文之起源 --- p.20 / Chapter 第三章 --- 六朝後期駢文之特色 --- p.36 / Chapter 第二編 --- 庚信生平 / Chapter 第一章 --- 信之先世 --- p.46 / Chapter 第二章 --- 南朝之仕 --- p.54 / Chapter 第三章 --- 北朝之仕 --- p.68 / Chapter 第四章 --- 信之家屬 --- p.76 / Chapter 第三編 --- 庾信賦論 / Chapter 第一章 --- 賦之緣起標準及其至六朝之流變 --- p.80 / Chapter 第二章 --- 前後期作品之異 --- p.91 / Chapter 第三章 --- 前期賦作  --- p.97 / Chapter 第一節 --- 春 賦  --- p.97 / Chapter 第二節 --- 燈賦鏡賦及鴛鴦賦 --- p.103 / Chapter 第三節 --- 七夕賦對燭賦及蕩子賦 --- p.111 / Chapter 第四章 --- 後期賦作(哀江南賦除外) --- p.116 / Chapter 第一節 --- 小園賦  --- p.116 / Chapter 第二節 --- 枯樹賦 --- p.134 / Chapter 第三節 --- 傷心賦 --- p.151 / Chapter 第四節 --- 竹杖賦與邛竹杖賦 --- p.156 / Chapter 第五節 --- 象戲賦及馬射賦 --- p.164 / Chapter 第五章 --- 哀江南賦 --- p.175 / Chapter 第一節 --- 寫作動機´ؤ´ؤ試評陳寅恪先生之說 --- p.175 / Chapter 第二節 --- 結構及主題 --- p.210 / Chapter 第三節 --- 評價  --- p.226 / Chapter 第四編 --- 各體駢文分論(上) / Chapter 第一章 --- 表序 --- p.241 / Chapter 第一節 --- 表序之緣起及標準 --- p.241 / Chapter 第二節 --- 慶賀之表 --- p.248 / Chapter 第三節 --- 懇請之表  --- p.259 / Chapter 第四節 --- 進貢之表 --- p.271 / Chapter 第五節 --- 趙國公集序 --- p.281 / Chapter 第二章 --- 書啟 --- p.285 / Chapter 第一節 --- 書啟之緣起及標準  --- p.285 / Chapter 第二節 --- 答謝滕王諸啟 --- p.291 / Chapter 第三節 --- 答謝趙王諸啟 --- p.298 / Chapter 第四節 --- 其他 --- p.311 / Chapter 第三章 --- 連珠 --- p.318 / Chapter 第一節 --- 連珠之緣起及標準 --- p.318 / Chapter 第二節 --- 擬連珠四十四首   --- p.323 / Chapter 第五編 --- 各體駢文分論(下) / Chapter 第一章 --- 銘 --- p.338 / Chapter 第一節 --- 銘之緣起及標準 --- p.338 / Chapter 第二節 --- 梁東宮諸山銘 --- p.342 / Chapter 第三節 --- 思舊銘  --- p.349 / Chapter 第四節 --- 其他 --- p.358 / Chapter 第二章 --- 碑 --- p.364 / Chapter 第一節 --- 碑之緣起及標準 --- p.364 / Chapter 第二節 --- 陝州弘農郡王張寺經藏碑及溫湯碑 --- p.371 / Chapter 第三節 --- 神道碑(上) --- p.379 / Chapter 第四節 --- 神道碑(下)  --- p.395 / Chapter 第三章 --- 誌銘  --- p.415 / Chapter 第一節 --- 誌銘之緣起及標準 --- p.415 / Chapter 第二節 --- 名臣誌銘(上) --- p.428 / Chapter 第三節 --- 名臣誌銘(下) --- p.433 / Chapter 第四節 --- 司馬裔鄭常神道碑與墓誌銘之比較 --- p.443 / Chapter 第五節 --- 夫人誌銘 --- p.453 / Chapter 第六編 --- 庾信與徐陵 / Chapter 第一章 --- 徐庾體與宮體  --- p.468 / Chapter 第二章 --- 身世之比較 --- p.476 / Chapter 第三章 --- 作品之比較 --- p.485 / Chapter 第一節 --- 賦銘 --- p.485 / Chapter 第二節 --- 表序 --- p.488 / Chapter 第三節 --- 碑誌  --- p.493 / Chapter 第四節 --- 書啟 --- p.497 / Chapter 第四章 --- 總結 --- p.505 / Chapter 第七編 --- 結 論 / Chapter 第一章 --- 庾信駢文對後世影響舉隅 --- p.516 / Chapter 第一節 --- 初唐四傑 --- p.516 / Chapter 第二節 --- 陳維崧與王闓連 --- p.529 / Chapter 第二章 --- 庾信在中國文學史之地位 --- p.542 / Chapter 第一節 --- 駢文之價值 --- p.542 / Chapter 第二節 --- 庾信駢文之評價 --- p.551 / 參考書目 / 參考論文
8

沈約硏究. / Shen Yue yan jiu.

January 1981 (has links)
劉慶華. / Manuscript (cops. 2-3 復印本). / Thesis (M.A.)--香港中文大學硏究院語文學部. / Manuscript (cops. 2-3 fu yin ben). / Includes bibliographical references (leaves 372-387). / Liu Qinghua. / Thesis (M.A.)--Xianggang Zhong wen da xue yan jiu yuan yu wen xue bu. / 前言 / Chapter 第一章 --- 緒論 / Chapter 第一節 --- 論齊梁文風 / Chapter 第二節 --- 沈約與當時文風 / Chapter 第二章 --- 沈約之世系及生平 / Chapter 第一節 --- 沈約之世系 / Chapter 第二節 --- 沈約之生平 / Chapter 第三節 --- 結論 / Chapter 第三章 --- 沈約的文學理論 / Chapter 第一節 --- 《宋書.謝靈運傳論》中的文學理論 / Chapter (1) --- 詩歌的起源問題 / Chapter (2) --- 關於情和文的關係問題 / Chapter (3) --- 聲律問題 / Chapter 第二節 --- 關於四聲的問題 / Chapter (1) --- 沈約與四聲 / Chapter (2) --- 四聲與宮商的關係 / Chapter 第三節 --- 關於八病的問題 / Chapter (1) --- 八病的解說 / Chapter (2) --- 沈約與八病 / Chapter 第四節 --- 結論 / Chapter 第四章 --- 沈約的文學作品欣賞 / Chapter 第一節 --- 五言詩 / Chapter (1) --- 五言詩的分類 / Chapter (2) --- 沈約五言詩的欣賞 / Chapter (3) --- 從平頭、上尾、蜂腰、鶴膝看沈約的五言詩 / Chapter (4) --- 從唐代律詩形式看沈約的五言詩 / Chapter 第二節 --- 樂府 / Chapter (1) --- 樂府的分類 / Chapter (2) --- 樂府欣賞 / Chapter 第三節 --- 賦 / Chapter (1) --- 賦的分類 / Chapter (2) --- 賦的欣賞 / Chapter 第四節 --- 結論 / Chapter 第五章 --- 鍾嶸《詩品》沈約評語中的幾個問題 / Chapter 第一節 --- 論「憲章鮑明遠」 / Chapter 第二節 --- 關於「于時(永明)謝朓未遒,江淹才盡,范雲名級故微,故約稱獨步。」 / Chapter (1) --- 謝朓未遒 / Chapter (2) --- 江淹才盡 / Chapter (3) --- 范雲名級故微 / Chapter 第三節 --- 論「詞密于范,意淺于江」 / Chapter (1) --- 詞密于范 / Chapter (2) --- 意淺于江 / Chapter 第四節 --- 結論 / Chapter 第六章 --- 總結 / 附錄 / 參考書目 / 參考論文
9

哀江南賦硏究. / Ai Jiangnan fu yan jiu.

January 1982 (has links)
謝雪梅. / 手稿本 (cops. 2-3複印本). / Thesis (M.A.)--香港中文大學硏究院中國語文學部. / Shou gao ben (cops. 2-3 fu yin ben). / Includes bibliographical references (leaves 315-323). / Xie Xuemei. / Thesis (M.A.)--Xianggang Zhong wen da xue yan jiu yuan Zhongguo yu wen xue bu. / Chapter 一 --- 引言 --- p.1 / Chapter 二 --- 庾信生平簡介 --- p.7 / Chapter 三 --- 哀江南賦之寫作年代與背景 --- p.12 / Chapter 四 --- 哀江南賦之題解與結構 --- p.26 / Chapter 五 --- 哀江南賦之主旨  --- p.43 / Chapter 六 --- 哀江南賦之字句 / Chapter (1) --- 對仗分析 --- p.52 / Chapter (2) --- 句式分析 --- p.68 / Chapter (3) --- 散行運用分析 --- p.78 / Chapter (4) --- 虛字運用分析 --- p.85 / Chapter 七 --- 哀江南賦之事類 --- p.94 / Chapter (1) --- 用事之手法 --- p.98 / Chapter (2) --- 事類之編排 --- p.104 / Chapter (3) --- 用事之特色 --- p.109 / Chapter (4) --- 用事之評價 --- p.131 / Chapter 八 --- 哀江南賦之聲律 / Chapter (1) --- 用韻參差 --- p.143 / Chapter (2) --- 平仄諧協 --- p.166 / Chapter (3) --- 聲情相配 --- p.169 / Chapter 九 --- 哀賦與離騷之比較 --- p.176 / Chapter (1) --- 內容(事、義、情、志) --- p.177 / Chapter (2) --- 技巧(想象、對比、穿插、急流轉棹) --- p.200 / Chapter 十 --- 歸魂賦、觀我生賦與哀江南賦之比較 --- p.221 / Chapter 十一 --- 哀賦與擬連珠、擬詠懷及傷心賦之匯通 --- p.266 / Chapter 十二 --- 哀江南賦之評價及其影響 --- p.286 / 注釋 --- p.306 / 參考書目 --- p.315 / 參考論文 --- p.322 / Chapter 附錄: --- 哀賦異解札記 --- p.324
10

The Hilbert-Hankel transform and its application to shallow water ocean acoustics

January 1986 (has links)
Michael S. Wengorvitz. / Originally presented as author's thesis (Sc. D.--Massachusetts Institute of Technology), 1986. / Includes bibliographies. / Supported in part by the Advanced Research Projects Agency monitored by ONR under contract no. N00014-81-K-0742 Supported in part by the National Science Foundation under grant ECS-8407285

Page generated in 0.0288 seconds