• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 36
  • 12
  • 8
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 536
  • 77
  • 66
  • 43
  • 41
  • 39
  • 37
  • 35
  • 34
  • 28
  • 27
  • 27
  • 25
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Complexity measures for classes of sequences and cryptographic applications

Burrage, Alex J. January 2013 (has links)
Pseudo-random sequences are a crucial component of cryptography, particularly in stream cipher design. In this thesis we will investigate several measures of randomness for certain classes of finitely generated sequences. We will present a heuristic algorithm for calculating the k-error linear complexity of a general sequence, of either finite or infinite length, and results on the closeness of the approximation generated. We will present an linear time algorithm for determining the linear complexity of a sequence whose characteristic polynomial is a power of an irreducible element, again presenting variations for both finite and infinite sequences. This algorithm allows the linear complexity of such sequences to be determined faster than was previously possible. Finally we investigate the stability of m-sequences, in terms of both k-error linear complexity and k-error period. We show that such sequences are inherently stable, but show that some are more stable than others.
272

Asymptotic structure of Banach spaces

Dew, N. January 2003 (has links)
The notion of asymptotic structure of an infinite dimensional Banach space was introduced by Maurey, Milman and Tomczak-Jaegermann. The asymptotic structure consists of those finite dimensional spaces which can be found everywhere `at infinity'. These are defined as the spaces for which there is a winning strategy in a certain vector game. The above authors introduced the class of asymptotic $\ell_p$ spaces, which are the spaces having simplest possible asymptotic structure. Key examples of such spaces are Tsirelson's space and James' space. We prove some new properties of general asymptotic $\ell_p$ spaces and also compare the notion of asymptotic $\ell_2$ with other notions of asymptotic Hilbert space behaviour such as weak Hilbert and asymptotically Hilbertian. We study some properties of smooth functions defined on subsets of asymptotic $\ell_\infty$ spaces. Using these results we show that that an asymptotic $\ell_\infty$ space which has a suitably smooth norm is isomorphically polyhedral, and therefore admits an equivalent analytic norm. We give a sufficient condition for a generalized Orlicz space to be a stabilized asymptotic $\ell_\infty$ space, and hence obtain some new examples of asymptotic $\ell_\infty$ spaces. We also show that every generalized Orlicz space which is stabilized asymptotic $\ell_\infty$ is isomorphically polyhedral. In 1991 Gowers and Maurey constructed the first example of a space which did not contain an unconditional basic sequence. In fact their example had a stronger property, namely that it was hereditarily indecomposable. The space they constructed was `$\ell_1$-like' in the sense that for any $n$ successive vectors $x_1 < \ldots < x_n$, $\frac{1}{f(n)} \sum_{i=1}^n \| x_i \| \leq \| \sum_{i=1}^n x_i \| \leq \sum_{i=1}^n \| x_i \|,$ where $ f(n) = \log_2 (n+1) $. We present an adaptation of this construction to obtain, for each $ p \in (1, \infty)$, an hereditarily indecomposable Banach space, which is `$\ell_p$-like' in the sense described above. We give some sufficient conditions on the set of types, $\mathscr{T}(X)$, for a Banach space $X$ to contain almost isometric copies of $\ell_p$ (for some $p \in [1, \infty)$) or of $c_0$. These conditions involve compactness of certain subsets of $\mathscr{T}(X)$ in the strong topology. The proof of these results relies heavily on spreading model techniques. We give two examples of classes of spaces which satisfy these conditions. The first class of examples were introduced by Kalton, and have a structural property known as Property (M). The second class of examples are certain generalized Tsirelson spaces. We introduce the class of stopping time Banach spaces which generalize a space introduced by Rosenthal and first studied by Bang and Odell. We look at subspaces of these spaces which are generated by sequences of independent random variables and we show that they are isomorphic to (generalized) Orlicz spaces. We deduce also that every Orlicz space, $h_\phi$, embeds isomorphically in the stopping time Banach space of Rosenthal. We show also, by using a suitable independence condition, that stopping time Banach spaces also contain subspaces isomorphic to mixtures of Orlicz spaces.
273

The fast evaluation of matrix functions for exponential integrators

Schmelzer, Thomas January 2007 (has links)
No description available.
274

Applications of high speed computers to the solution of differential equations

Phelps, C. E. January 1962 (has links)
No description available.
275

Statistical inference for ordinary differential equations using gradient matching

Macdonald, Benn January 2017 (has links)
A central objective of current systems biology research is explaining the interactions amongst components in biopathways. A standard approach is to view a biopathway as a network of biochemical reactions, which is modelled as a system of ordinary differential equations (ODEs). Conventional inference methods typically rely on searching the space of parameter values, and at each candidate, numerically solving the ODEs and comparing the output with that observed. After choosing an appropriate noise model, the form of the likelihood is defined, and a measure of similarity between the data signals and the signals described by the current set of ODE parameters can be calculated. This process is repeated, as part of either an iterative optimisation scheme or sampling procedure in order to estimate the parameters. However, the computational costs involved with repeatedly numerically solving the ODEs are usually high. Several authors have adopted approaches based on gradient matching, aiming to reduce this computational complexity. These approaches are based on the following two-step procedure. At the first step, interpolation is used to smooth the time series data, in order to avoid modelling noisy observations; in a second step, the kinetic parameters of the ODEs are either optimised or sampled, whilst minimising some metric measuring the difference between the slopes of the tangents to the interpolants, and the parameter-dependent time derivative from the ODEs. In this fashion, the ODEs never have to be numerically integrated, and the problem of inferring the typically unknown initial conditions of the system is removed, as it is not required for matching gradients. A downside to this two-step scheme is that the results of parameter inference are critically dependent on the quality of the initial interpolant. Alternatively, the ODEs can be allowed to regularise the interpolant and it has been demonstrated that it significantly improves the parameter inference accuracy and robustness with respect to noise. This thesis extends and develops methods of gradient matching for parameter inference and model selection in ODE systems in a systems biology context.
276

Regularity and uniqueness in the calculus of variations

Campos Cordero, Judith January 2014 (has links)
This thesis is about regularity and uniqueness of minimizers of integral functionals of the form F(u) := ∫Ω F(∇u(x)) dx; where F∈C2(RNn) is a strongly quasiconvex integrand with p-growth, Ω⊆RnRn is an open bounded domain and u∈W1,pg(Ω,RN) for some boundary datum g∈C1,α(‾Ω, RN). The first contribution of this work is a full regularity result, up to the boundary, for global minimizers of F provided that the boundary condition g satisfies that ΙΙ∇gΙΙLP < ε for some ε > 0 depending only on n;N, the parameters given by the strong quasiconvexity and p-growth conditions and, most importantly, on an arbitrary but fixed constant M > 0 for which we require that ΙΙ∇gΙΙO,α < M. Furthermore, when the domain Ω is star-shaped, we extend the regularity result to the case of W1,p-local minimizers. On the other hand, for the case of global minimizers we exploit the compactness provided by the aforementioned regularity result to establish the main contribution of this thesis: we prove that, under essentially the same smallness assumptions over the boundary condition g that we mentioned above, the minimizer of F in W1,pg is unique. This result appears in contrast to the non-uniqueness examples previously given by Spadaro [Spa09], for which the boundary conditions are required to be suitably large.
277

Quelques thèmes en l'analyse variationnelle et optimisation / Some topics in variational analysis and optimization

Nguyen, Le Hoang Anh 23 February 2014 (has links)
Dans cette thèse, j’étudie d’abord la théorie des [gamma]-limites. En dehors de quelques propriétés fondamentales des [gamma]-limites, les expressions de [gamma]-limites séquentielles généralisant des résultats de Greco sont présentées. En outre, ces limites nous donnent aussi une idée d’une classification unifiée de la tangence et la différentiation généralisée. Ensuite, je développe une approche des théories de la différentiation généralisée. Cela permet de traiter plusieurs dérivées généralisées des multi-applications définies directement dans l’espace primal, tels que des ensembles variationnels,des ensembles radiaux, des dérivées radiales, des dérivées de Studniarski. Finalement, j’étudie les règles de calcul de ces dérivées et les applications liées aux conditions d’optimalité et à l’analyse de sensibilité. / In this thesis, we first study the theory of [gamma]-limits. Besides some basic properties of [gamma]-limits,expressions of sequential [gamma]-limits generalizing classical results of Greco are presented. These limits also give us a clue to a unified classification of derivatives and tangent cones. Next, we develop an approach to generalized differentiation theory. This allows us to deal with several generalized derivatives of set-valued maps defined directly in primal spaces, such as variational sets, radial sets, radial derivatives, Studniarski derivatives. Finally, we study calculus rules of these derivatives and applications related to optimality conditions and sensitivity analysis.
278

On the fine structure of dynamically-defined invariant graphs

Naughton, David Vincent January 2014 (has links)
No description available.
279

Multi-scale parameterisation of static and dynamic continuum porous perfusion models using discrete anatomical data

Hyde, Eoin Ronan January 2014 (has links)
The aim of this thesis is to replace the intractable problem of using discrete flow models within large vascular networks with a suitably parameterised and tractable continuum perfusion model. Through this work, we directly address the hypothesis that discrete vascular data can be incorporated within continuum perfusion models via spatially-averaged parameterisation techniques. Chapter 1 reviews biological perfusion from both clinical and computational modelling perspectives, with a particular focus on myocardial perfusion. In Chapter 2, a synthetic 3D vascular network was constructed, which was controllable in terms of its size and properties. A multi-compartment static Darcy perfusion model of this discrete system was parameterised via a number of techniques. Permeabilities were derived using: (i) porosity-scaled isotropic (ϕI); (ii) Huyghe and Van Campen (HvC); and (iii) projected-PCA parameterisation methods. It was found that HvC permeabilities and pressure-coupling fields derived from the discrete data produced the best comparison to the spatially-averaged Poiseuille pressure. In Chapter 3, the construction and analysis of high-resolution anatomical arterial vascular models was undertaken. In Chapter 4, various anatomically-derived vascular networks were used to parameterise our perfusion model, including a microCT-derived rat capillary network, a single arterial subtree, and canine and porcine whole-organ arterial models. Allowing for general-connectivity (as opposed to strictly-hierarchical connectivity) yielded a significant improvement on the continuum model pressure. For the whole-organ model however, it was found that the best results were obtained by using porosity-scaled isotropic permeabilities and anatomically-derived pressure-coupling fields. It was also discovered that naturally occurring small length but relatively large radius vessels were not suitable for the HvC method. In Chapter 5, the suitability of derived parameters for use within a dynamic perfusion model was examined. It was found that the parameters derived from the original static network were adequate for application throughout the cardiac cycle. Chapter 6 presents a concluding discussion, highlighting limitations and future directions to be investigated.
280

On the divergence difficulty of quantized field theories and the rigorous treatment of radiation reaction : with related additional papers

Peng, Hwan-Wu January 1945 (has links)
By an orthodox application of the perturbation theory to the general case of a quantized field, it is shown that the divergence difficulty hitherto encountered arises from a faulty application of the expansion method. The difficulty disappears if the degeneracy of the unperturbed system is properly treated by the method of secular perturbation. Physically, it is shown that this amounts to a rigorous treatment of the radiation reaction.

Page generated in 0.0187 seconds