• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Jeux différentiels stochastiques à information incomplète / Stochastic differential games with incomplete information

Grün, Christine 21 September 2012 (has links)
L'objectif de cette thèse est l'étude des jeux différentiels stochastiques à information incomplète. Nous considérons un jeu à deux joueurs adverses qui contrôlent une diffusion afin de minimiser, respectivement de maximiser un paiement spécifique. Pour modéliser l'incomplétude des informations, nous suivrons la célèbre approche d'Aumann et Maschler. Nous supposons qu'il existe des états de la nature différents dans laquelle le jeu peut avoir lieu. Avant que le jeu commence, l'état est choisi au hasard. L'information est ensuite transmise à un joueur alors que le second ne connaît que les probabilités respectives pour chaque état.Dans cette thèse nous établissons une représentationduale pour les jeux différentiels stochastiques à information incomplète. Ici, nous utilisons largement la théorie des équations différentielles stochastiques rétrogrades (EDSRs), qui se révèle être un outilindispensable dans cette étude. En outre, nous montrons comment, sous certaines restrictions, cette représentation permetde construire des stratégies optimales pour le joueur informé. Ensuite, nous donnons, en utilisant la représentation duale, une preuve particulièrement simple de la semiconvexité de la fonction valeur des jeux différentiels à information incomplète.Un autre partie de la thèse est consacré à des schémas numériques pour les jeux différentiels stochastiques à informationincomplète. Dans la dernière partie nous étudions des jeux d'arrêt optimal en temps continue, appelés jeux de Dynkin, à information incomplète. Nous établissons également une représentation duale, qui est utilisé pour déterminer des stratégies optimales pour le joueur informé dans ce cas. / The objective of this thesis is the study of stochastic differential games with incomplete information. We consider a game with two opponent players who control a diffusion in order to minimize, respectively maximize a certain payoff. To model the information incompleteness we will follow the famous ansatz of Aumann and Maschler. We assume that there are different states of nature in which the game can take place. Before the game starts the state is chosen randomly. The information is then transmitted to one player while the second one only knows the respective probabilities for each state. In this thesis we establish a dual representation for stochastic differential games with incomplete information. Therein we make a vast use of the theory of backward stochastic differential equations (BSDEs), which turns out to be an indispensable tool in this study. Moreover we show how under some restrictions that this representation allows to construct optimal strategies for the informed player.Morover we give - using the dual representation - a strikingly simple proof for semiconvexity of the value function of differential games with incomplete information. Another part of this thesis is devoted to numerical schemes for stochastic differential games with incomplete information. In the last part we investigate continuous time optimal stopping games, so called Dynkin games, with information incompleteness. We show that these games have a value and a unique characterization by a fully non-linear variational PDE for which we provide a comparison principle. Also we establish a dual representation for Dynkin games with incomplete information.
2

Jeux différentiels avec information incomplète : signaux et révélations / Differential games with incomplete information : signals and revelation

Wu, Xiaochi 08 June 2018 (has links)
Cette thèse concerne les jeux différentiels à somme nulle et à deux joueurs avec information incomplète. La structure de l'information est liée à un signal que reçoivent les joueurs. Cette information est dite symétrique quand la connaissance du signal est la même pour les deux joueurs (le signal est public), et asymétrique quand les signaux reçus par les joueurs peuvent être différents (le signal est privé).Ces signaux sont révélés au cours du jeu. Dans plusieurs situations de tels jeux, il est montré dans cette thèse, l'existence d'une valeur du jeu et sa caractérisation comme unique solution d'une équation aux dérivées partielles.Un type de structure d'information concerne le cas symétrique où le signal est réduit à la connaissance par les joueurs de l'état du système au moment où celui-ci atteint une cible donnée (les données initiales inconnues sont alors révélées). Pour ce type du jeu, nous avons introduit des stratégies non anticipatives qui dépendent du signal et nous avons obtenu l'existence d'une valeur.Comme les fonctions valeurs sont en général irrégulières (seulement continues), un des points clefs de notre approche est de prouver des résultats d'unicité et des principes de comparaison pour des solutions de viscosité lipschitziennes de nouveaux types d'équation d'Hamilton-Jacobi-Isaacs associées aux jeux étudiés. / In this thesis we investigate two-person zero-sum differential games with incomplete information. The information structure is related to a signal communicated to the players during the game.In such games, the information is symmetric if both players receive the same signal (namely it is a public signal). Otherwise, if the players could receive different signals (i.e. they receive private signals), the information is asymmetric. We prove in this thesis the existence of value and the characterization of the value function by a partial differential equation for various types of such games.A particular type of such information structure is the symmetric case in which the players receive as their signal the current state of the dynamical system at the moment when the state of the dynamic hits a fixed target set (the unknown initial data are then revealed to both players). For this type of games, we introduce the notion of signal-depending non-anticipative strategies with delay and we prove the existence of value with such strategies.As the value functions are in general irregular (at most continuous), a crucial step of our approach is to prove the uniqueness results and the comparison principles for viscosity solutions of new types of Hamilton-Jacobi-Isaacs equation associated to the games studied in this thesis.

Page generated in 0.0196 seconds