• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lightweight deformable mirrors for ground- and space-based imaging systems

Kendrew, Sarah January 2006 (has links)
The next generation of ground- and space-based astronomical observatories will generate an increased requirement for lightweight and robust deformable optics. In space ultra-lightweight actively controlled mirrors will enable a continuing increase of aperture sizes, whilst large adaptive mirrors will become increasingly standard features in the optical design of adaptive optics-optimised Extremely Large Telescopes on the ground. This thesis presents results from a project to design, manufacture and test a prototype active mirror in a nickel-carbon fibre reinforced polymer (CFRP), which has been suggested in the literature to be a promising candidate material for such applications. Extensive finite element analysis results from gravitational sag and thermal models, as well as finite element-based predictions of the central actuator influence function profile, are presented. The main problems were encountered as a result of the in-mold nickel coating process, which resulted in residual form errors, and poor design of the support structures, leading to deterioration of the mirror surface quality. No fundamental reason ruling this material out for the use of precision deformable optics was identified. The finite element analysis results show significant promise for increased use of the method in optical design, as well as in integrated optical simulations for Extremely Large Telescopes.
2

High-performance signal processing architectures for digital aperture array telescopes

Armstrong, Richard Paul January 2011 (has links)
An instrument with the ability to image neutral atomic hydrogen (HI) to cosmic redshift will allow the fundamental properties of the Universe to be more precisely determined; in particular the distribution, composition, and evolutionary history of its matter and energy. The Square Kilometre Array (SKA) is a radio survey telescope conceived with this aim. It will have the observational potential for much further fundamental science, including strong field tests of gravity and general relativity, revealing the origin and history of cosmological re-ionisation and magnetism, direct measures of gravitational radiation, and surveys of the unmapped Universe. And it is the advance of instrumentation that will enable it. This thesis makes three central contributions to radio instrumentation. Digital aperture arrays are a collector technology proposed for the key low- and mid- frequency ranges targeted by the SKA that have the potential to provide both the collecting area and field of view required for deep, efficient all-sky surveys of HI. The 2-Polarisations, All Digital (2-PAD) aperture array is an instrumental pathfinder for the SKA, novel in being a densely-spaced, wide-band aperture array that performs discrete signal filtering entirely digitally. The digital design of the 2-PAD radio receiver and the deployment of the aperture array and signal processing system at Jodrell Bank Radio Observatory is detailed in this thesis. The problem of element anisotropy in small arrays, the atomic unit of the SKA station array, ultimately affects beam quality. Addressing this issue, a metaheuristic digital beam-shape optimisation technique is applied to a small beamformed array, and is shown to outperform traditional analytic solutions. Digital processing for aperture arrays is challenging. A qualitative framework shows that energy, computational and communication requirements demand optimised processing architectures. A quantitative model reveals the physical limitations on architecture choice. An energy-optimised architecture, the IBM BIT integer array processor, is investigated in detail; a cycle-accurate architectural simulator and programming language are developed and used to build signal processing algorithms on the array architecture.

Page generated in 0.0123 seconds