• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lunar surface composition from X-ray fluorescence spectroscopy

Carter, James Andrew January 2013 (has links)
What is the composition of the surface of the Moon? This investigation aims to map the abundances of some of the main rock-forming elements over the surface of the Moon. Accurately determining the magnesium, aluminium and silicon abundances would have great advantages when performing geological and geochemical studies of the Earth-Moon system, helping to answer questions about its formation and evolution. This thesis uses data from the Chandrayaan-1 X-ray Spectrometer (C1XS) instrument on Chandryanaan-1, a high quality instrument that nevertheless flew in one of the lowest solar minima on record. Modelling software is described and written to predict the performance of an orbiting X-ray spectrometer (XRS) under different conditions, a vital task for premission planning and post-mission analysis. Surface factors, such as compositional modification by crater rays and the enhancement of X-ray returns by volatile sodium, are modelled to assess their effects on XRS signals. The C1XS data is processed using a data pipeline, and inspected and analysed. After some post-pipeline processing maps are produced, first elemental line intensity ratio maps, and then absolute elemental abundance maps. These are produced for the southern nearside lunar highlands, and are then compared to previous datasets and ground truth.
2

Investigating the distribution and source(s) of lunar volatiles

Mortimer, James January 2016 (has links)
Following the renewed interest in the volatile inventory of the Moon witnessed in the last decade, from both sample studies and data from orbital missions, it is timely to reassess the distribution and likely source(s) of light element volatiles (C, N, He, Ne, and Ar) in a diverse suite of lunar mare basalts and soils, providing new insights about volatiles indigenous to the lunar interior, volatiles produced <i>in situ</i> at the lunar surface, and volatiles delivered to and implanted into the lunar surface. Simultaneous static-mode mass spectrometric measurements of these key volatiles, extracted from the same aliquot of sample by high-resolution stepped combustion, enable a more detailed identification of the different volatile components present by comparing their varying release patterns across a range of temperature steps. Taken in context with other studies of different volatile elements, this new data contributes towards a greater understanding of the Earth-Moon system, with additional implications for future <i>in situ</i> resource utilisation at the lunar surface. With an average δ<sup>15</sup>N value of +0.93 ± 9.39 ‰, the indigenous N component measured in mare basalts is most compatible with a CO carbonaceous chondrite source for nitrogen in the lunar interior, although some caveats exist. Variations in abundance and isotopic composition of indigenous nitrogen imply a heterogeneous lunar mantle. Assuming up to ~50 % loss of solar wind <sup>36</sup>Ar from lunar soils, nitrogen trapped in soils can be reconciled with up to 87 % being contributed from a non-solar source with an isotopic composition of between +87 ‰ and +160 ‰. Noble gases in soils are dominated by solar wind components, with only minor amounts of cosmogenic neon being released at the highest temperature steps. In mare basalts, noble gases are a mixture of trapped, radiogenic, and cosmogenic components (from which cosmogenic production rates can be calculated) and exposure ages for previously undated samples suggested.
3

Exploring the moon in the thermal infrared : the space environment goniometer

Warren, Tristram January 2015 (has links)
Measurements of the light scattering behaviour of the regolith of airless bodies in the Solar System, across wavelengths from the visible to the far infrared are essential to understanding their physical properties. This thesis describes the design, build and calibration of a novel instrument to measure the angular directionality of thermal infrared emission from surfaces (direction emissivity, DE). This work was originally motivated by the need for new DE measurements to support analysis of data collected by the thermal and far infrared Diviner Lunar Radiometer instrument (8-400 μm) currently in orbit around the Moon. To fully interpret the brightness temperatures measured by the Diviner instrument a three dimensional thermal physical model is required. These models typically assume that infrared radiation is scattered isotropically from the lunar surface. Although generally the models are in very good agreement with Diviners measured brightness temperatures, there are some discrepancies particularly in permanently shadowed regions near the lunar poles. One possible reason for these discrepancies is that the thermal infrared DE of the lunar surface is not isotropic as is typically assumed by many of these models. The "Oxford Space Environment Goniometer" (OSEG) was developed to measure the DE of surface across wavelengths from the visible to the thermal and far infrared. Analysis and modelling of initial DE measurements made with the OSEG show that the DE is dependent on the optical properties and roughness of the surface. DE measurements of the lunar regolith analogue material JSC-1AF have been incorporated into a three dimensional thermal physical model to show that the predicted surface temperatures of a polar lunar-like permanently shadowed region can differ by 10 K compared to assuming an isotropic DE.
4

Photogrammetric analysis of panoramic photography and its application to lunar mapping

Piteri, Sophia January 1980 (has links)
No description available.
5

Topics in lunar evolution using sample analysis and remotely sensed information

Joy, Katherine H. January 2007 (has links)
No description available.
6

Numerical study of the mechanical properties of lunar soil by the discrete element method

Modenese, Chiara January 2013 (has links)
Lunar soil, defined as the finest part of the lunar regolith which covers the entire surface of the Moon, has shown to have remarkable shear strength properties, highlighted by the clearly visible effects of soil cohesion. The main objective of this thesis is to unveil the physical explanations causing this unusual soil behaviour in a waterless, airless, lunar environment. Ultra-High Vacuum (UHV), in particular, is considered responsible for increasing the strength of surface energy forces due to lunar soil outgassing. In turn, the presence of surface energy forces, arising from van der Waals intermolecular forces, is thought to alter the mechanical properties of lunar soil. A particle-based microscopic approach by means of the Discrete Element Method (DEM) was utilised to investigate the effects of surface energy forces on the macroscopic soil be- haviour. A micro-mechanical contact model, based on the JKR theory, was selected to describe the inter-granular behaviour between lunar soil particles. Physical and geometrical parameters typical of lunar soil were employed. Several triaxial tests were run to identify a link, if any, between the microscopic surface energy parameter and the macroscopic soil cohesion, which was interpreted as a true soil cohesion. In addition, very low stress levels and high soil densities were simulated in order to take into account the low gravitational field and the high state of soil compaction caused by continuous meteorite impacts on the Moon. Results from triaxial tests were analysed at both the peak and critical state. It was found that in the ideal case of perfectly spherical grains, the presence of adhesion is a source of noticeable macroscopic soil cohesion. However, no influence was observed in terms of macroscopic friction angle. Furthermore, a brittle macroscopic soil behaviour was revealed, owing to the simulated inter-granular chemical bonds and the very low stress conditions applied. Finally, similar to the behaviour of cemented sands, very little cohesion was recorded at the critical state. Subsequently, particle shape effects were investigated by complementing the numerical model with a simple form of inter-particle rolling resistance. Simulations were also run with non-convex grains of increasing geometrical complexity in order to simulate more realistically the irregular shapes of lunar soil grains. In both cases, the interplay of surface energy forces with particle shape effects resulted in even higher shear strength, with predictions similar to the estimates of shear strength for real lunar soil. Once again, the peak strength was dominated by macroscopic cohesion which, on the other hand, was hardly observable at the critical state, confirming the tendency observed from spherical grains. Finally, the practical implications of the above findings were discussed in terms of bearing capacity, trafficability and slope stability on the lunar surface. In particular an analytical approach, based on the bearing capacity problem, was devised to study the performance of a rigid wheel rotating on a lunar terrain and operating under different dynamic conditions.
7

Contraintes sur les violations à la symétrie de Lorentz par analyse des données de télémétrie laser Lune / Constaints on Lorentz symmetry violations using lunar laser ranging observations

Bourgoin, Adrien 19 December 2016 (has links)
La relativité générale (RG) et le modèle standard des particules permettent de comprendre les quatre interactions fondamentales de la nature. La formulation d'une théorie quantique de la gravitation permettrait d'unifier ces deux tenants de la physique moderne. D'après les grandes théories d'unification, une telle union est possible moyennant la brisure de certaines symétries fondamentales apparaissant à la fois en RG et dans le modèle standard telle la symétrie de Lorentz. Les violations de la symétrie de Lorentz peuvent être paramétrées dans tous les domaines de la Physique par une théorie effective du champ appelée extension du modèle standard (SME). Une violation au principe d'invariance locale de Lorentz dans le secteur gravitationnel serait supposée engendrer des perturbations dans la dynamique orbitale des corps présents dans le système solaire, notamment la Lune. Ainsi, à partir des données extrêmement précises de télémétrie laser, l'orbite lunaire peut être minutieusement analysée afin de débusquer d'éventuelles anomalies dans son mouvement. Dans cette optique, ELPN (Ephéméride Lunaire Parisienne Numérique), une nouvelle éphéméride lunaire intégrée dans le cadre du formalisme SME a été développée durant la thèse. ELPN fournit les solutions au problème lunaire sous la forme de séries temporelles datées en temps dynamique barycentrique (TDB). Parmi les solutions numériquement intégrées, mentionnons la position et la vitesse du vecteur barycentrique Terre-Lune, les angles de librations lunaires, la différence entre le temps terrestre et le TDB, ainsi que l'ensemble des dérivées partielles intégrées depuis l'équation aux variations. Les prédictions de l'éphéméride ont été utilisées afin de réduire les observations lunar laser ranging (LLR). Dans le cadre de la RG, la dispersion des résidus s'est avérée en accord avec les dispersions calculées à partir des éphémérides INPOP13b et DE430. Dans le cadre du SME minimal, l'analyse des données LLR a permis de contraindre toutes violations à l'invariance locale de Lorentz. Une grande attention a été portée à l'analyse des incertitudes afin de fournir des contraintes réalistes. Ainsi, dans un premier temps, les combinaisons linéaires de coefficients SME ont été isolées puis ajustées aux observations. Puis, dans un second temps, les incertitudes réalistes ont été déterminées par une méthode de ré-échantillonnage. L'analyse des données de télémétrie laser Lune n'a pas permis de révéler de violations au principe d'invariance locale de Lorentz agissant au niveau de l'orbite lunaire. Les prédictions de la RG ont donc été validées avec des précisions absolues allant de 10-9 à 10-12. / General Relativity (GR) and the standard model of particle physics provide a comprehensive description of the four interactions of nature. A quantum gravity theory is expected to merge these two pillars of modern physics. From unification theories, such a combination would lead to a breaking of fundamental symmetry appearing in both GR and the standard model of particle physics as the Lorentz symmetry. Lorentz symmetry violations in all fields of physics can be parametrized by an effective field theory framework called the standard-model extension (SME). Local Lorentz Invariance violations in the gravitational sector should impact the orbital motion of bodies inside the solar system, such as the Moon. Thus, the accurate lunar laser ranging (LLR) data can be analyzed in order to study precisely the lunar motion to look for irregularities. For this purpose, ELPN (Ephéméride Lunaire Parisienne Numérique), a new lunar ephemeris has been integrated in the SME framework. This new numerical solution of the lunar motion provides time series dated in temps dynamique barycentrique (TDB). Among that series, we mention the barycentric position and velocity of the Earth-Moon vector, the lunar libration angles, the time scale difference between the terrestrial time and TDB and partial derivatives integrated from variational equations. ELPN predictions have been used to analyzed LLR observations. In the GR framework, the residuals standard deviations has turned out to be the same order of magnitude compare to those of INPOP13b and DE430 ephemerides. In the framework of the minimal SME, LLR data analysis provided constraints on local Lorentz invariance violations. Spetial attention was paid to analyze uncertainties to provide the most realistic constraints. Therefore, in a first place, linear combinations of SME coefficients have been derived and fitted to LLR observations. In a second time, realistic uncertainties have been determined with a resampling method. LLR data analysis did not reveal local Lorentz invariance violations arising on the lunar orbit. Therefore, GR predictions are recovered with absolute precisions of the order of 10-9 to 10-12.

Page generated in 0.0154 seconds