11 |
The role of impact driven chemistry on the lithosphere of MarsRamkissoon, Nisha Khama January 2016 (has links)
The University of Kent's two stage light gas gun was used to simulate Martian impacts in order to investigate two processes: serpentinisation and devolatilisation. Understanding these processes is vital to understanding surface mineralogy and the source of any methane, and other volatiles detected in the Martian atmosphere by past, present and future missions. Here, Martian analogue minerals were shocked and subsequently analysed using Raman Spectroscopy and Scanning Electron Microscopy (SEM) to characterise the behaviour of these minerals during planetary impacts.
|
12 |
The habitability of aqueous environments on MarsFox-Powell, Mark George January 2017 (has links)
It is clear that a planet's ability to support life is intimately associated with its physical evolution, but many aspects of this link have not been resolved. For example, differing geologic histories have the potential to drive large-scale differences in the chemistry of planets’ waters, with unknown implications for habitability. In this thesis, I link the geochemical evolution of Mars to the habitability of its associated evaporitic or brine environments, which have been widespread throughout the planet's history. Their habitability is compared with the Earth system, where a chloride-dominated chemistry permits the microbial colonisation of brines with extremely low water availability. By assessing the physicochemical environments in martian brines, I present evidence that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of divalent ions, can influence habitability even if water availability is high. The importance of this parameter has been overlooked in terrestrial microbiology, likely due to the paucity of environments with high levels of di- or multivalent ions, and its possible mechanics and significance for defining habitat space on Earth and other planets are discussed. Additionally, cultivation techniques and next-generation DNA sequencing were used to identify organisms capable of growth in extreme Mars-relevant brines, which contrast with those typically found in NaCl-rich brines on the Earth. The isolation of a novel sulfate-tolerant Marinococcus strain, and its growth response to fluctuating martian brine compositions are reported. These results show that microbial growth kinetics are defined not merely by additive ion effects, but rather by bulk physicochemical conditions defined by complete ion assemblages. Changes to composition driven by evaporation or freezing can therefore push a brine into more biologically clement conditions by altering a brine’s physicochemical profile The data herein present a strong case that geochemical context is essential to understanding habitability in extreme saline environments. A new framework for predicting brine habitability is required, taking into account the geochemical history of the brine as well as the effects different ionic compositions exert on microorganisms. This work is a significant contribution across several fields, and emphasises the value of interdisciplinary science in answering questions of planetary habitability. Furthermore, this thesis provides a case study for exploring the impact of planetary-scale geochemical evolution on the ability of a planet to support life.
|
13 |
The climate of Mars from assimilations of spacecraft dataRuan, Tao January 2015 (has links)
The Mars climate has been explored using two reanalysis datasets based on combining spacecraft observations of temperature and dust with the UK version of the LMD Mars GCM. The semiannual oscillation (SAO) of zonal-mean zonal wind was studied using the existing Mars Analysis Correction Data Assimilation reanalysis during Mars Years (MYs) 24-27. The SAO of zonal-mean zonal wind was shown to exist and extend over a wide range of latitudes. The dynamical driving processes of the SAO in the tropics were investigated, and the forcing due to meridional advection appeared to be the main contributor to the SAO. The study also highlighted some phenomena associated with perturbations of the global circulation during the MY 25 global dust storm (GDS). The meridional advection term was shown to be weaker in the first half of GDS year MY 25 than in the following year, but the forcing due to meridional advection and westward thermal tides both appeared to intensify during the MY 25 GDS. The capabilities of the Mars data assimilation system were also extended in this thesis, 1) to represent dynamic dust lifting and dust transport during the assimilation and 2) to assimilate measurements of the dust vertical distribution. The updated reanalysis was then used to study several major dust events during MY28-29. It proved able to reproduce a southward-moving regional dust storm without the overwhelming assistance of the assimilation. Dust devil lifting was found to at least partly provide the initial pattern of dust of this moving dust storm. The cold anomaly of the cooling zone beneath this dust storm could be as large as ∼ 2 K similar to the magnitude of what was found during the MY 25 GDS. Using the reanalysis, the life cycle of the planet-encircling global dust storm in MY28 was also studied. The Noachis dust storm that occurred just before the MY 28 GDS was found to be the joint result of a travelling Chryse storm, enhanced by dust lifting along its path and local dust lifting in Noachis itself. The adiabatic heating associated with the north polar warming that occurred during MY 28 GDS was up to ∼ 3 times as large as that found during the non-GDS year MY 29. The wind stress dust lifting was shown to in strong correlation with the global average dust loadings, and significantly decreased when the GDS decayed.
|
14 |
Measurement of wind on the surface of MarsWilson, Colin Frank January 2003 (has links)
The Martian atmosphere is of great scientific interest, both because of its similarity to Earth’s atmosphere, and because of its relevance to exploration of Mars. Although satellite instruments have provided a wealth of atmospheric data, they have provided little information about the atmospheric boundary layer. Conditions in the lowest few metres of the Martian atmosphere are perhaps the most directly interesting to humans, as this is the portion of our own atmosphere with which we have the most contact. In this thesis is described the design, calibration and operations planning for a new wind sensor for use on Mars. This sensor is lighter and smaller than previous Mars wind sensors. At the time of writing, the wind sensor is on its way to Mars as part of the science payload of Beagle 2, a small exobiology lander due to arrive in December 2003. The Beagle 2 wind sensor (B2WS) is a hot-film anemometer. Three platinum films are equally spaced around the surface of a vertical cylinder. A known current is dissipated in each film, heating the film 40-80°C above the ambient gas temperature. The film temperature is obtained by measuring its resistance. An effective heat transfer coefficient is then calculated for each film. A novel scheme has been developed which allows calculation of a wind vector from the differences between these heat transfer coefficients, rather than from their average. This makes the measured wind vector less prone to common-mode errors such as uncertainties in air temperature or sky temperature. The sensor was calibrated in a low density wind tunnel, optimised to provide stable winds of air or carbon dioxide at Martian pressures (5 – 10 mbar) and speeds (0.5 – 30 m/s). The flow field in the test section was calculated using analytical and finite element modelling techniques, and validated experimentally using a pitot probe. This facility’s stability and accuracy represent a significant improvement over previous calibration facilities. An analytical model of heat flow in the sensor has been developed in order to permit correction for conditions which may be encountered on Mars, but were not tested for in the wind tunnel. The wind sensor’s performance in a real Martian atmosphere is simulated using wind and temperature data from a previous Mars lander. The position of the wind sensor position at the end of Beagle 2's motorised arm allows several new possibilities for wind measurement on Mars that were unavailable in previous missions. The height of the wind and air temperature sensors can be adjusted to any height between 20 and 95 cm above the ground. The temperature sensor can be scanned horizontally and vertically above the lander to study convective updrafts above the heated lander. Planned operations sequences on Mars are discussed.
|
15 |
Contribution de l’instrument ChemCam à la compréhension de la croûte primitive martienne et des mécanismes d’altération de la surface de Mars : quantification LIBS des éléments traces Li, Rb, Sr, Ba et Cu / ChemCam contribution to the understanding of the martian primitive crust and alteration processes occurring on the martian surface : Trace element Li, Rb, Sr, Ba and Cu quantifications using LIBSPayré, Valérie 01 December 2017 (has links)
Jusqu’à peu, Mars était vue comme une planète à substrat crustal homogène, dominé par des basaltes à olivine. Les missions in situ ont contribué à bouleverser cette vision si simpliste. Le rover Curiosity qui sillonne le cratère d’impact de Gale formé à l’Hespérien (3.5-3.8 Ga) creusé dans des roches noachiennes (> 3.8 Ga), a ainsi découvert, grâce aux analyses LIBS (‘laser induced breakdown spectroscopy’) de l’instrument ChemCam, des roches ignées alcalines felsiques noachiennes, révélant un magmatisme primitif évolué (Sautter et al., 2016) : ce résultat est en accord avec l’identification récente de clastes ignés felsiques d’âge Noachien observés dans la brèche martienne NWA 7533 et ses paires. Une croûte primitive martienne évoluée de type ‘continentale’ aurait-elle existé ? C’est ce que suggère ce travail de par l’observation orbitale GRS de plusieurs terrains noachiens felsiques enrichis en K et Th et abondants en feldspaths. Par ailleurs, du fait de l’identification de feldspaths peu calciques dans les roches et clastes de Gale et de la brèche, il est envisagé ici que la croûte primitive martienne ait pu se former selon un modèle différent de l’océan de magma défini sur la Lune. De plus, la quantification de Li, Rb, Sr et Ba dans l’ensemble des matériaux ignés de Gale analysés par la LIBS ainsi que leurs concentrations dans les clastes ignés de la brèche, suggèrent l’existence de plusieurs réservoirs magmatiques primitifs. En parallèle, la quantification du Cu à partir des données LIBS effectuée dans cette étude, met en évidence des abondances anormalement élevées dans des roches potassiques de la région de Kimberley. Majoritairement associées à des silicates détritiques ignés, ces phases de cuivre proviendraient d’une source magmatique primitive siliceuse localisée dans le flanc Nord de Gale. Au Noachien, la circulation hydrothermale dans un magma évolué aurait formé un gisement métallifère de cuivre aux alentours du cratère. Finalement, la Terre et Mars sont géologiquement plus proches que jamais / Until recently, Mars was considered as a planet with a homogeneous crust dominated by olivine-rich basalts. This simplistic vision has been largely disrupted especially with results of recent in situ missions. In this way, the Curiosity rover that travels in Gale crater, which formed by impact during the Hesperian period (3.5-3.8 Gyr) within igneous basement rocks dated at 4.2 Gyr, discovered Noachian alkaline igneous rocks (> 3.8 Gyr) using the ChemCam LIBS instrument (‘laser induced breakdown spectroscopy’): this observation along with the recent identification of Noachian igneous felsic clasts within the breccia meteorite NWA 7533 and subsequent paired stones, revealed an evolved primitive magmatic system (Sautter et al., 2016). Would an evolved ‘continental’ primitive crust have ever existed on Mars? This is favored in this work by orbital GRS observations showing several Si-K-Th-rich Noachian terrains displaying abundant feldspars. Besides, the identification of low-Ca feldspars within the clasts of the breccia and Gale rocks, suggests that the primitive martian crust may have formed according to a model that differs from the lunar magma ocean. In addition, the LIBS quantification of Li, Rb, Sr and Ba presented in this work in igneous rocks, along with the distribution of alkali trace elements within the igneous clasts of the breccia, suggests the potential occurrence of several magmatic reservoirs. Concurrently, in the Kimberley formation, copper quantification using LIBS data, reveals anomalously elevated abundances within potassic rocks: these Cu-phases mainly associated with detrital igneous silicates, would come from a primitive felsic igneous source located in the northern rim. During the Noachian period, the hydrothermal circulation within an evolved magmatic chamber favored the formation of a Cu-bearing deposit in Gale vicinity. After all, the Earth and Mars are geologically closer than ever
|
16 |
Caractérisation de la structure électrique de Mars par méthode d'induction électromagnétique globale à partir des données magnétiques satellitaires de Mars Global Surveyor / Characterization of the electrical internal structure of Mars from electromagnetic induction method using Mars Global Surveyor satellite magnetic dataCivet, François 08 June 2012 (has links)
Les méthodes d'induction électromagnétique permettent de caractériser la conductivité électrique des matériaux, dont les corps planétaires telluriques, depuis les couches superficielles de la croûte jusqu'aux zones les plus internes, dans le manteau inférieur. Pour une source de champ électromagnétique donnée, des courants sont induits dans les matériaux qui y sont soumis. Avec l'essor des données magnétiques satellitaires, de nouvelles méthodes d'analyse des données magnétiques permettent d'obtenir des images unidimensionnelles de la structure électrique de ces corps car la structure spatio-temporelle de la source électromagnétique en est bien connue. Les travaux de mon doctorat ont eu pour but de mettre en place une nouvelle méthode d'analyse permettant de déterminer des modèles de structure interne globaux pour n'importe quel corps du système solaire pour lequel on dispose de longues séries temporelles magnétiques satellitaires. Après avoir testé cette méthode sur des modèles synthétiques et l'avoir appliqué au cas de données réelles terrestre pour lesquelles des études d'induction électromagnétiques antérieurs permettent d'avoir un a priori sur le modèle de conductivité électrique attendu, nous avons obtenu les premiers modèles de conductivité électrique martien en utilisant les données magnétiques du satellite Mars Global Surveyor. Ces résultats nous ont permis de valider des modèles de structure interne antérieurs établis à partir d'analyses géochimiques et minéralogiques des météorites martiennes. Cette méthode innovante est aujourd'hui la seule capable d'obtenir une image électrique des manteaux telluriques à partir de données magnétiques satellitaires pour des corps autres que la Terre ou la Lune et pour lesquels aucun a priori sur la structure spatio-temporelle du champ électromagnétique inducteur externe n'est nécessaire. / My Ph.D. work consists in the investigation of satellite magnetic data to infer the deep internal conductivity distribution. I developed a new global electromagnetic induction method applied to planetary magnetic datasets without strong a priori hypothesis on the external inducing source field. My method is based on a spectral correction of gapped data magnetic time series to restore the time spectral content of the source field. This external source depends on the planetary environment and is therefore different for each planetary bodies. The method aims at recovering with a maximum accuracy internal and external spherical harmonic coefficients of transients fields, whose ratio is used as a transfer function to retrieve the internal distribution of electrical conductivity. While for the Earth, a good proxy of the source field activity is the Dst index, no such proxy exists for other planets. Hence, for our study of Mars transient magnetic field from MGS, one of the major part of my work is the determination of an appropriate continuous proxy for the external variability. On Earth the external electromagnetic source is well known, and may be described by a spherical harmonic geometry dominated by the dipole term. This source field may be characterized using a magnetic activity index named the Dst index. The method has been tested on synthetic data generated within the framework of SWARM mission. This mission consists of a 3 satellites constellation. One of the main objectives is to infer the 3D electrical distribution in the deep Earth. SWARM synthetic data consist in a time series of spherical harmonic (SH) coefficients, external and internal, generated from a simple non-realistic 3D model. In this model, several regional and local conductors, in a radially symmetric 3 layers model have been embedded. Using this dataset, our method give satisfactory results. We have been able to obtain the external and internal SH coefficients - for the first SH degree, which is known to be the most energetic degree of the external source - using only one of the 3 synthetic time series. Then, the method has been used on real data from Ørsted. In this case, we had to pre-process the data to correct from ionospheric and aligned currents contributions. We developed a statistical analysis to remove the ionospheric field using 2 geomagnetic indices : AL and Kp. Hence, we have enlarged data toward higher and lower latitudinal zones than what has been done in previous works. Finally, we have been able to obtain 1D conductivity models, which fits reasonably with existing conductivity data in the deep Earth. Finally, we worked on Mars Global Surveyor (MGS) data. One of the most time consuming parts of this work was the determination of an appropriate continuous proxy for the external variability in the vicinity of Mars. Without any measurements of the IMF (Interplanetary Magnetic Field) during MGS sciences acquisition, we have used ACE (Advanced Composition Explorer) data. This satellite orbits around the L1 point of the Sun-Earth system, measuring solar wind magnetic characteristics. We have time-shifted ACE data to Mars position for 4 temporal windows where Mars and Earth were closed to the same Parker's spiral's arm, and finally determined a proxy explaining the major part of the variability observed in Mars data. Despite numerous gaps in MGS data, we have been able to establish the 1D conductivity distribution, fitting reasonably existing geochemical models. Although the method may be unstable for some cases, we obtained satisfactory results for in depth conductivity of the planet.
|
Page generated in 0.0282 seconds