• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Knowledge for Teaching and Visualizing Differential Geometry

Pinsky, Nathan 01 May 2013 (has links)
In recent decades, education researchers have recognized the need for teachers to have a nuanced content knowledge in addition to pedagogical knowledge, but very little research was conducted into what this knowledge would entail. Beginning in 2008, math education researchers began to develop a theoretical framework for the mathematical knowledge needed for teaching, but their work focused primarily on elementary schools. I will present an analysis of the mathematical knowledge needed for teaching about the regular curves and surfaces, two important concepts in differential geometry which generalize to the advanced notion of a manifold, both in a college classroom and in an on-line format. I will also comment on the philosophical and political questions that arise in this analysis.
2

A Mathematical Framework for Unmanned Aerial Vehicle Obstacle Avoidance

Chaturapruek, Sorathan 01 January 2014 (has links)
The obstacle avoidance navigation problem for Unmanned Aerial Vehicles (UAVs) is a very challenging problem. It lies at the intersection of many fields such as probability, differential geometry, optimal control, and robotics. We build a mathematical framework to solve this problem for quadrotors using both a theoretical approach through a Hamiltonian system and a machine learning approach that learns from human sub-experts' multiple demonstrations in obstacle avoidance. Prior research on the machine learning approach uses an algorithm that does not incorporate geometry. We have developed tools to solve and test the obstacle avoidance problem through mathematics.

Page generated in 0.0637 seconds