• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 46
  • 39
  • 32
  • 15
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 116
  • 64
  • 62
  • 56
  • 55
  • 44
  • 35
  • 34
  • 32
  • 32
  • 30
  • 30
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Quantum information protocols on pure and mixed states

Parker, Stephen January 2001 (has links)
No description available.
52

Ion implantation phenomena in 4th-silicon carbide

Phelps, Gordon James January 2003 (has links)
No description available.
53

Molecular manipulation and self assembly on semiconductor surfaces

Keeling, David Leslie January 2003 (has links)
No description available.
54

In situ vibrational spectroscopy of thin organic films confined at the solid-solid interface

Haydock, Sarah Amanda January 2002 (has links)
No description available.
55

The synthesis and filling of single-walled carbon nanotubes

Friedrichs, Steffi January 2002 (has links)
No description available.
56

Quantum impurity models : a local moment approach

Dickens, Nigel L. January 2002 (has links)
No description available.
57

Growth and transfer of graphene and hexagonal boron nitride by chemical vapor deposition : applications to thermally efficient flexible electronics / Croissance et transfert de graphène et nitrure de bore hexagonal : applications thermiques pour l'électronique flexible

Levert, Théo 13 March 2019 (has links)
L'électronique flexible est devenue un sujet au cœur des recherches actuelles. Dans ce but, plusieurs matériaux ont été utilisés tels que le PEN, PET ou le polyimide (PI). Ces matériaux présentent une bonne flexibilité et une compatibilité chimique avec les différents procédés utilisés en microélectronique, mais souffrent d'une faible conductivité thermique, menant à une réduction des puissances de travail des composants électroniques transférés sur de tels substrats, comparé à des substrats rigides plus classiques tels que le Silicium. Plusieurs pistes ont été investiguées pour contourner ce problème, et l'une des solutions consiste à remplir la matrice du polymère ou PI avec des nanomatériaux. Dans ce sens nous avons utilisé des structures 3D de graphène et de nitrure de bore hexagonal sous forme de mousse afin de remplir la matrice d'un PI. Nous expliquerons en détail comment nous avons obtenu un nouveau substrat flexible avec des propriétés thermiques améliorées. / A major challenge is to find a way to grow those materials in order to achieve an easy and economically attractive way to produce large area of those materials with a good quality. Another challenge is to transfer those materials on substrate compatible with electronics (mainly SiO2). We will focus the first part of our work on investigation of the growth conditions required to produce large area graphene and h-BN of good quality and their transfer on SiO2. Flexible electronics has become an important field of research for many applications, such as flexible batteries. In this goal, several materials have been used such as PEN, PET or polyimide (PI). All these materials present a good flexibility and a chemical compatibility with microelectronics process but they suffer from poor thermal conductivity, leading to lower utilization of power of devices deposited compared to classic microelectronic substrate such as SiO2. Several way have been recently investigated to bypass this problem and a good solution is to fill the matrix of the polymer or polyimide with nanomaterials or nanofillers. We choose to use graphene and h-BN as the filler in a 3D shape: a foam of graphene or h-BN as the nanofiller and we chose a PI as the matrix. In the second part, we will explain in details how we achieve novel flexible substrates with enhanced thermal properties. We succeed in producing polycrystalline graphene on copper with quite a good quality, fully covering the metallic substrate with a size of 2x2cm. We tried to grow monocrystalline graphene using standard CVD and achieved hexagonal single crystals of 30µm, which is quite small compared to other methods used in literature. We synthetized polycrystalline h-BN using copper as a catalyst and ammonia borane as the precursor with a size of 6x2cm with a good homogeneity on all available substrate. We were able to transfer both graphene an h-BN on Si02 substrate using both classical wet transfer and bubbling transfer, leading to a fastest transfer and resulting on clean transfer of our materials, free of cracks, bubbles and resist residues. We succeed in producing both 3D graphene and 3D h-BN as foam using a Nickel foam as the catalyst, resulting in multilayer graphene and h-BN with a good quality. We produced new flexible and thermal efficient substrates using these foams as a filler in a matrix of PI, already commonly used as a classical flexible substrate for microelectronics. We developed two generations of substrates. We found similar mechanical properties and thermal stability as the commercial Kapton. We deposited thermistors on the surface in order to study the thermal dissipation of our samples. We improved the maximum power applied on the thermistors up to 100% before breakdown.
58

Experimenal study of the aerodynamics of a horizontal axis wind turbine

Campo Gatell, Vanessa del 22 March 2013 (has links)
One of the challenges of the wind energy community today is to improve the existing background on the aerodynamic phenomena of a Horizontal Axis Wind Turbine (HAWT), the prediction of the wind speed distribution on the rotor plane, and the estimation of the design loads. This dissertation aims at contributing to the fulfillment of these objectives. In this way, this study assessed the feasibility of measuring the loads exerted on a HAWT blade by means of Stereoscopic Particle Image Velocimetry (SPIV), which is a non intrusive technique that provides with the whole 3D velocity field in a plane. Thus, with this PIV-Loads method, the velocity and pressure fields, as well as the resultant aerodynamic forces around a section of the blade, would be available simultaneously, without the need of modifying the model or disturbing the flow. In order to achieve this goal progressively, the PIV-Loads method, based in a Momentum Equation contour-based approach, was firstly validated using DNS data, both for a laminar unsteady flow case, as for a velocity averaged turbulent flow. Secondly, the method was tested in the wind tunnel with a bidimensional problem, measuring forces in a stationary flat plate, for different angles of attack (with laminar and turbulent flow conditions). The force estimation results were compared with those provided by a high sensitive balance. Finally, the PIV-Loads method was applied to a HAWT model working both in axial and yaw flow conditions, measuring forces on a rotating blade for steady and unsteady cases. Final load calculations were compared with those resulting from a numerical simulation based in the Panel method approach. Bringing the project to completion, the near vortex wake of a HAWT was characterized by means of Time Resolved PIV. Regarding the PIV-Loads methodology, load predictions are more reliable if the integration path does not cross a shear layer or a boundary layer. In addition, it is neither recommended to neglect the third velocity component when measuring forces on a rotating HAWT blade, nor to eliminate the velocity fluctuation terms when dealing with turbulent flows. All implemented codes and experimental results were validated or compared with numerical or experimental alternative data showing good consistency. The conclusion is that the PIV-Loads method provides with precise results if the available velocity data is sufficiently accurate. However, any PIV errors such as lack of resolution, velocity gradients inside the interrogation window or laser reflections, may lead to uncertainties in the load measurements. Any future improvement in this sense will certainly lead to better results.
59

Elasticity problems in domains with with nonsmooth boundaries

Esparza, David January 2001 (has links)
No description available.
60

Optical spectroscopy of two-dimensional hole systems in the integer quantum hall regime

Kehoe, Thomas Bernard January 2002 (has links)
No description available.

Page generated in 0.0159 seconds