• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear solutions to pipe flow

Wedin, HaÌŠkan January 2004 (has links)
No description available.
2

Closure of a laminar separation bubble by natural and wake-induced transition

Thomas, Richard January 2004 (has links)
The concentrated use of one-dimensional hot-wire anemometry has shown leading edge boundary layer disturbances induced under each passing wake, which grow steadily via by-pass and natural transition methods into turbulent strips that convect with the flow. These disturbances are of such strength that the separated region is resisted and effectively swept away by the passing turbulence, momentarily giving rise to a wholly attached laminar boundary layer across the entire flat plate surface.;Propagation rates have shown leading edge speeds in excess of freestream values, a combination of boundary layer destabilisation and the negative jet effect of each wake. Trailing edge values are of typically 50% freestream.;Controlling the chordwise proximity of neighbouring wakes allowed for the investigation of the effect and extent of the calmed region behind each induced turbulent strip. Measurements have shown that although there is no slowing of the advancing turbulence by the calmed flow, a strong suppression of velocity fluctuations is seen, related to the proximity of the turbulent strips. Turbulence level reductions of up to 40% have been demonstrated as wake spacing is reduced.;The use of microphones to measure surface pressure fluctuations revealed the amplification of instabilities in the separated shear layer. These have been shown to be viscous Tollmien-Schlichting vortices, originating from fluctuations in the attached laminar boundary layer, and are responsible for the natural development of turbulent flow between wakes.
3

An experimental study of the interfacial mixing in a density stratified co-flow fluid system

Rogan, Charlie January 2013 (has links)
An experimental program was carried out to examine the effect of velocity on a density stratified co-flow system. Tests were performed with a layer of freshwater flowing over a layer of saltwater, with a range of velocities in each layer examined. High resolution density and velocity data was acquired using combined Laser Induced Fluorescence and Particle Image Velocimetry. These measurements were used to calculate mass transport rates, entrainment velocities, non dimensional entrainment rates and Richardson numbers. Statistical analysis was used to identify correlations in the data and identify the factors governing the behaviour of the system. The findings are discussed alongside those of previous researchers
4

Enhancement of liquids mixing using active pulsation in the laminar flow regime

Xia, Qingfeng January 2012 (has links)
Both the need for mixing highly viscous liquids more effectively and the advance of micro-scale applications urge the development of technologies for liquid mixing at low Reynolds numbers. However, currently engineering designs which offer effective jet mixing without structural and operational complexity are still lacking. In this project, the method of enhancing liquid mixing using active pulsation in the laminar flow regime is explored experimentally. This work started by improving the inline pulsation mechanism in an existing confined jet configuration whereby the fluid from a primary planar jet and two surrounding secondary planar jets are pulsated by active fluid injection control via solenoid valves in the out-of-phase mode. The influence of Reynolds number, pulsation modes, frequency, duty cycle on mixing is then investigated using PLIF and PIV experimental techniques. A combination of different mixing mechanisms is found to be at play, including sequential segmentation, shearing and stretching, vortex entrainment and breakup. At a given net flow Reynolds number, an optimal frequency exists which scales approximately with a Strouhal number (Str=fh/Uj) about 1. This optimal frequency reflects the compromise of the vorticity strength and segmentation length. Furthermore, a lower duty cycle is found to produce a better mixing due to a resultant higher instantaneous Reynolds number in the jet flow. Overall, the improvement of the rig has resulted in an excellent mixing being achieved at a net flow Reynolds number of 166 which is at least order of magnitude lower than in the original rig. In order to achieve fast laminar mixing at even lower Reynolds numbers, the active pulsation mechanism using lateral synthetic jet pairs is designed and tested at a net flow Reynolds number ranging from 2 to 166 at which a good mixing is achieved. The influence of actuation frequency and amplitude, and different jet configuration is evaluated using PLIF and PIV experimental techniques. At the mediate to high Reynolds numbers tested in this study, the interaction and subsequent breakup of vortices play a dominant role in provoking mixing. In contrast, at the lower end of Reynolds numbers the strength of vortex rollup is weakened significantly and as a result folding and shearing of sequential segments provide the main mechanism for mixing. Therefore it is essential to use multiple lateral synthetic jet pairs to achieve good mixing in both mixing channel and synthetic jet cavity at this Reynolds number. It is found that an increase in both the actuation magnitude and frequency improves mixing, thereby the velocity ratio represents the relative strength of the pulsation velocity to the mean flow velocity is crucial for mixing enhancement. In order to identify actuation conditions for good mixing, a regression fit is conducted for the correlation between the dimensionless parameters, net flow Reynolds number Ren, stroke length L and Strouhal number Str. Over the tested range of the net flow Reynolds number from 2 to 83, the relationship of parameters is found and the velocity ratio at least above 2.0. Suggested by the comparatively small exponent, net flow Reynolds number is less influential than stroke length and Strouhal number. The success in obtaining excellent mixing using lateral synthetic jet pairs at low Reynolds numbers in the present work has opened up a promising prospect of their applications in various scenarios, including mixing of highly viscous liquids at macro-scale and micro-mixing.

Page generated in 0.0108 seconds