31 |
Some thermal properties of matter at low temperaturesMate, C. F. January 1958 (has links)
No description available.
|
32 |
Thermal properties of matter at low temperaturesWolcott, N. M. January 1955 (has links)
No description available.
|
33 |
Some specific heats at low temperaturesSmith, P. L. January 1954 (has links)
No description available.
|
34 |
A statistical model of large P(_T) and large mass productionSafari, Reza January 1978 (has links)
Generally this thesis deals with application of thermodynamical model to high, energy interactions. The first chapter is an introduction. We give the important definitions and also results needed in subsequent work. In chapter 2 a model incorporating various thermal components is proposed to discuss the production of secondaries having large transverse momentum component (i.e. P(_L) ~ 0). The model is compared to the ISR data of large P(_T) pions. Chapter 3 gives a brief description of experimental situation about the azimuthal, rapidity and transverse momentum correlations. The general treatment of multi-temperature model (MTM) is expressed. Momentum recoil effect is included to fit the same/opposite side momentum correlations data. Some other relevant models are explained in this part for comparison. Finally calculations of average charged particles multiplicity accompanying the trigger particle is shown in this chapter. Chapter 4 considers the transverse mass (m_T) universality and its agreement with MTM. Production of high mass particles and their correlation are investigated in the framework of MTM. Again some possible models of different authors are presented and referenced in here.
|
35 |
A computational study of surface topography arising from energetic particle interactionsScott, Chris January 2012 (has links)
A computational investigation into the development of surface topographies subjected to energetic particle bombardment has been undertaken. Classical Molecular Dynamics (MD) and on-the- y kinetic Monte Carlo (otfKMC) techniques were employed and di erent bombardment conditions were considered. Surface topography development is of interest due to applications such as ion etching, which can be used in the manufacture of semiconductor devices. Crater formation on a HfO2-MgO interface system was investigated using a variety of methods. Initially single atom and cluster bombardments were performed, highlighting the radiation tolerance of the interface system. Subsequently, swift heavy ion bombardment of the interface was considered using a MD thermal spike model and an electron stripping with recombination model. Both models gave similar results to those seen experimentally: hillocks forming on the surfaces over the impact points of the ions; and ion tracks forming around the paths of the ions in the material. Hillock heights and sputtering yields were shown to increase linearly with the electronic stopping force of the bombarding ion, for the range of systems we considered. Bullet impacts on armour plating (SiC) have been simulated using MD. The bullet was modelled by a hard sphere that was forced into the substrate to the target depth. Both 4H and 6H SiC polytypes were considered with di erent bullet sizes and speeds. The 4H system resulted in the displacement of less atoms and also a much lower sputtering yield than for the similar 6H system. However dislocations were seen to propagate through the 4H system but not the 6H one. A large amount of sputtering was observed in the higher speed 6H simulations, with the ejection of many big clusters of atoms. These clusters generally had a high temperature (around 1,500 K) with speeds typically in excess of 1,000 m/s. Surface topography development by way of multiple impacts on Au was investigated using two di erent methodologies. Initially a traditional, MD based, methodology was used to model Au self bombardment of the high index f3 11 0g surface, which has been shown to produce interesting features. The disadvantage of this type of method is that MD cannot simulate time scales long enough to allow di usion between impacts. The MD method was shown to lead to a build up of defects in the systems: a result of the artificially high dose rate. An improved method was then used to model Ar and Au bombardment of both f0 1 0g and f3 11 0g Au surfaces. This hybrid MD-otfKMC technique enabled realistic time scales to be achieved. MD was used to model the ballistic phase while otfKMC was used to model di usion between events. The erosion rate of the surface was shown to be almost linear with time while the roughness of the surface was shown to oscillate: indicative of the healing process that occurs between bombardment events.
|
36 |
The use of intersecting film cooling passages for nozzle guide vane coolingNowlin, Scott Raymond January 2009 (has links)
No description available.
|
37 |
Supercooling and glass formationde Nordwall, H. J. January 1956 (has links)
No description available.
|
38 |
Thermodynamic properties and bond energies of simple moleculesSmith, F. J. January 1956 (has links)
No description available.
|
39 |
Some problems in low-tempertaure physicsStenholme, S. T. January 1967 (has links)
No description available.
|
40 |
Heat conduction and the possibility of second sound in solid neonKimber, Rodney M. January 1972 (has links)
No description available.
|
Page generated in 0.0116 seconds