• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 152
  • 15
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The construction, development and application of potential simulation models to the filling of carbon nanotubes by molten salts

Bishop, C. L. January 2009 (has links)
Inorganic nanotube structures (INTs) can be synthesised through the direct filling of carbon nanotube templates with molten salts. The resulting structures, usually rationalised in terms of known bulk crystal structures, are shown to be contained within a general set of structures classified in terms of folded sheets of infinite squares and hexagons. A flexible model for the carbon nanotube is employed (using a Terso II potential), a significant development on previous work in which a rigid description was utilised. As a result, the nanotube is free to rotate, vibrate and translate within the simulation cell and analysis techniques are developed to account for this behaviour. Molecular dynamics simulations are performed using different molten salt models. These salt models are chosen so as to reflect different relative energetics of the underlying bulk crystal structures. In this context, a new model is developed and characterised in which key bulk structures have equal energies. The molten salts are observed to directly ll the carbon nanotubes which vary in diameter. The stability of novel key structures, which are characterised as having non-circular cross sections, are rationalised with reference to elliptical carbon nanotube distortions. For small diameter carbon nanotubes a preference for square net based INTs is observed. The energy landscapes of the inorganic nanotubes, that are revealed by the molecular dynamics simulations, appear more complex than that of the carbon nanotubes themselves. The structures of larger inorganic nanotubes formed are dependent both on the nanotube diameter and the radius ratio of the ionic salt of choice. In contrast, the morphologies of small diameter inorganic nanotubes are dependent on the nanotube diameter only. A first principles analysis of the atomistic interactions is developed to explain this novel observation. The resulting theory is consistent with the ubiquitous nature of the rock salt nanocrystallites observed in experiment.
22

Physical properties of alcohol based deep eutectic solvents

Harris, Robert Christopher January 2009 (has links)
The physical properties, viscosity, conductivity, surface tension and density were measured for a series of alcohol based Deep Eutectic Solvents (DES) as a function of choline chloride (ChCl) concentration. The point at which the system becomes a saturated salt solution in the diol systems is at 20 mol% ChCl, because at higher concentrations the conductivity decreases despite the increase in number of charge carrying species. The addition of ChCl to glycerol results in a decrease in the viscosity of the system by interrupting the intermolecular hydrogen bonding of the glycerol molecules, whereas the addition of ChCl to the diols results in an increase in viscosity. The mono-alcohol phenol has been shown to form a DES in a ratio of 4:1 phenol: ChCl. Stable DES’s have also been formed using sugars, D-(-) fructose, D-glucose, xylitol and meso-erythritol. Determination of solvent-solute interactions is key to the understanding of solvent properties in liquids therefore the Kamlet-Taft parameters α, β, π* and ET (30) parameter were determined for a series of alcohol based DES using three solvatochromic dyes, 4-nitroaniline, N,N-dimethyl-4-nitroaniline and Reichardt’s dye ET (30). It is shown that they are similar to RNH3+X-, R2NH2+X- and imidazolium ionic liquids. The effect of ChCl on the Kamlet-Taft parameters is not uniform across the systems and is dependant upon the hydrogen bond donor. The solventless esterification of glycerol and lauric was carried out using ChCl with the intention of using its hydrogen bonding interaction with glycerol to behave a potential site inhibitor as to selectively form mono- or di-ester products. The work has shown that the addition of ChCl to the system, initially slows the rate of the mono-ester formation, but actually encourages the reaction to progress further towards the di-ester product, when compared to the pure glycerol system encouraging only mono-ester formation.
23

Isotope effects and fraction mechanisms

Whiteside, R. W. January 1977 (has links)
No description available.
24

The solvent isotope effect and its application to the decomposition of a diazo compound and a solvolysis reaction

Davies, M. H. January 1970 (has links)
No description available.
25

Super electron donors powerful reductions performed by neutral organic molecules

Schonebeck, Franziska January 2007 (has links)
This project aims to explore the ability of organic molecules to transfer electrons and is based on the recent development within the Murphy group of a novel organic molecule, called Super-S.E.T. reagent 1, that allows the reduction of unactivated aryl and alkyl iodides. My study investigates the scope of donor 1 as a reducing agent and extends the study to a more powerful donor 2. Chapter One provides an introduction to the world of electron transfer. After giving a theoretical background, synthetic applications of electron transfer are highlighted, in particular using metal chemistry, electrochemical and photochemical methods. This chapter also discusses the use of sulfones and sulfonamides as challenging substrates for electron transfer. Finally the field of neutral organic electron-donors, which form the basis of my studies, is introduced. Chapters Two to Seven then summarise my work. Chapter Two and the second part of Chapter Six highlight my adventures in investigating the chemistry of donor 1. Until now, donor 1 is known to reduce efficiently only specific aryl and alkyl iodides. This report (i) highlights the scope and limitations of donor 1 in the reduction of different aryl iodide substrates and of aryl halides other than iodides and (ii) discusses the application of donor 1 in the selective reduction of an ortho- over an analogous para-aryl iodide in substrate 3 and (iii) recounts the successful isolation of the first adduct of the donor, i.e. 4. Chapter Three to Six deal with the exploration of the power of Super-S.E.T. reagent 2. This donor was successfully applied as a powerful reducing agent in the reductive cleavages of a number of activated sulfones and sulfonamides, giving the reduced counterparts in excellent yields. Further, strong evidence for the first example of a Julia olefination using a neutral organic electron donor has been given. It was also shown that the reagent has remarkable reducing power, being the first neutral organic reagent to generate highly reactive aryl anion intermediates in the reduction of aryl 3 bromides and iodides. Ester substrates 5,6 and 7 were synthesised and investigated as mechanistic probes in that context. The chemistry of donor 2 with aliphatic halides was investigated, leading to the formation of aldehydes in DMF or DMA. It was found that the proportion of aldehyde can be increased with more equivalents of donor 2, ultimately leading to the aldehyde being the exclusive product. Using non-polar solvents, such as diethyl ether, donor 2 was transformed into a powerful reducing agent for alkyl bromides, reacting at room temperature and showing radical chemistry. Selective reduction of an alkyl over aryl bromide was achieved also. Intriguing reactivity was observed with anthracene esters, giving the dihydroester as one of the major products, if a carbene is added, and dihydroanthracene if not. After a summary of results in Chapter Seven, Chapter Eight presents the experimental procedures and analytical data for the compounds discussed in Chapters Two to Six.
26

Towards a symergy between spectra and theory through case studies : Vibrational analyses in biocompatible silanes, bioactive peptides and explicit solvent algorithms

Rozhok, Mykola January 2010 (has links)
No description available.
27

The gas-phase pyrolysis of organic molecules

Shirazi, Z. H. January 1973 (has links)
No description available.
28

Arrhenius parameters of reactions of alkyl radicals

Smith, E. January 1976 (has links)
No description available.
29

Measurement of Arrhenius parameters in reactions involving alkanes

Storey, P. D. January 1976 (has links)
No description available.
30

Mechanistic studies on the alkyl and arylhydrazines

Uysal, N. January 1975 (has links)
No description available.

Page generated in 0.0285 seconds