211 |
Seismic properties of reservoir rocks from the Morecambe Bay gas fieldsSharp, Andrew James January 1995 (has links)
No description available.
|
212 |
Reservoir geophysics of the Clyde field : the development and application of quantitative analysis techniquesSaid, Dhiya Mustafa Mohamed January 2000 (has links)
No description available.
|
213 |
Post-stack inversion of seismic reflection data from the Belvoir CoalfieldGang, Tian January 1995 (has links)
Post-Stack inversion of reflection data in seismic exploration can be used to obtain detailed information about lithology variations in the zone of interest. Generalized Linear Inversion (GLI) has previously been applied as a useful tool to achieve this. The purpose of my investigation is to apply GLI to data from the Coal Measures. It is known that in the Coal Measures the most strongly reflecting horizons are the coal seams, which are the exploration targets. In the seismic bandwidth they are thin beds, which causes particular problems associated with vertical resolution for the inversion. The method is applied to a seismic line from the Belvoir Coalfield supplied by British Coal. In order to get better relative amplitudes and to keep the same bandwidth down the whole section, the data were carefully reprocessed using the ProMAX software. Wireline log data from two boreholes intersected by the seismic line were edited to generate acoustic impedance logs as functions of time. Software was developed to implement GLI, and tested on synthetic data before applying it to the reprocessed data. The initial guesses for earth and wavelet models at the boreholes were obtained after systematic studies to determine the best strategy. The construction of the initial guess for the boundary locations elsewhere on the section is very critical for the success of the search for the global minimum. A combination of structural interpretation and the inversion results obtained from the previous trace was found to do the best job. I have tried to invert separately for the boundary locations, acoustic impedances and the wavelet, with the wavelet parameterized in the frequency domain. I found that, provided that the wavelet extracted at a borehole is a good estimate with low error energy, the most successful strategy is just to invert for the boundary locations, keeping the acoustic impedances and the extracted wavelet fixed. If the extracted wavelet is not a good estimate, then parameterizing the wavelet in the frequency domain and optimizing those parameters at the borehole is a useful approach. None of the implemented inversion strategies produced a perfect result. Discrepancies were due to the difficulty in obtaining true relative amplitude values on the processed section. The inversion results and systematic studies on the field dataset indicate that the assumptions of the convolutional model are not satisfied by the processed section.
|
214 |
The glacial geomorphology of part of the Western Grampians of Scotland with especial reference to the limits of the Loch Lomond AdvanceThorp, P. W. January 1984 (has links)
No description available.
|
215 |
Seismic structure and earthquake focal mechanisms of the Hengill volcanic complex, SW IcelandMiller, Angus D. January 1996 (has links)
Iceland provides a unique opportunity to study the processes that occur along mid- ocean ridges. In 1991, thirty temporary seismic stations were installed at the Hengill volcanic complex to record high-quality digital data from local earthquakes. From these data 449 earthquakes have been located, most of them beneath the geothermal area. A local earthquake tomographic inversion was carried out to determine the three- dimensional V(_p) and V(_p) /V(_s) structure to 6 km depth, using P-wave travel times and S-P times from local earthquakes recorded in 1981 and 1991. The resulting models are smoothly varying and give a low data variance. The V(_p) model is similar to that of a previous tomographic inversion in the area, although the models differ in detail. The main high-V(_p) features of these models are interpreted as solidified intrusions, and underlie extinct volcanic centres. A low V(_p) /V(_s) body (-4%) is detected from 0 to 3 km depth that correlates with the surface expression of the geothermal field and is probably due to a combination of effects that include a slightly lower pore fluid pressure (and thus a higher steam content), and rock matrix alteration. Well-constrained moment tensors were determined for 70 local earthquakes by inverting the polarities and amplitude ratios of P and S arrivals. This method works well and is relatively insensitive to wave-speed model and attenuation variations. Most of the earthquakes are non-double-couple with explosive volumetric components. Only 17 (28%) of the earthquakes are consistent with a double-couple model. The remaining earthquakes are modelled as a combination of an opening tensile crack and a shear fault. Two geometries are considered: (1) rupture on two separate fault planes aligned at 45º, and (2) opening-shear rupture on a single fault plane, which is equivalent to coplanar tensile and shear faults. Both models can give the same moment tensors, and the data cannot distinguish between them. They give a good fit to the data, with few polarity misfits for most of the earthquakes. Right-lateral opening-shear strike-slip faulting on near-vertical planes is consistent with the regional seismicity of the South Iceland Seismic Zone. The non-double-couple earthquakes may result from the regional stress regime interacting with the geothermal field.
|
216 |
Deep sea seismic stratigraphyBiart, B. N. M. January 1980 (has links)
Horizons responsible for the reflection of seismic waves within deep-sea sediments are shown to be less reliable for the purposes of correlation than their counter-parts in shallow margin sequences. Similar surfaces, such as abrupt lithological changes and unconformities, in the two different realms are not neccessarily produced by the same processes. It is the nature of these processes which control the chronostratigraphic significance of a reflector. Thus reflectors may be correlated with reference to their genetic process. Horizons caused by time-restricted physical processes have enhanced chronostratigraphic significance. In the deep-sea, layers in which the physical properties change slowly with depth (transition layers) are also important for reflector formation. In as much as these transitions can be affected by temperature, pressure and sediment geochemistry, as well as time, the equation of an horizon at two different localities does not neccessarily imply correlation in time (i.e. the horizon is not neccessarily a chronostratigraphic time line). The two most important factors affecting impedance are the primary sedimentary geochemical composition and the nature of the grain to grain contacts within the sediment. Impedance increases with increasing grain density and increased rigidity of the sedimentary frame. The inter-dependance of all sediment physical properties greatly complicates the study of the relationships between them. Modelling can be used to demonstrate the affects of variation of individual properties. Synthetic seismograms can be generated using either physical properties data measured from discrete samples or from wire-line data. While quality is a limiting factor to the performance of .-. physical properties modelling, the latter is of value in that it enables modelling at many more localities than is possible with wire-line techniques alone. Abrupt impedance contrasts that produce reflectors important in deep-sea seismic stratigraphy may be grouped into a) Compaction horizons produced by gradual increase in over-burden pressure, b) Cementation horizons produced by variation in diagenesis with depth c) Calcite compensation depth (CCD) controlled horizons characterised by marked variation in primary sedimentary content and d) Unconformities produced by bottom current action.
|
217 |
A local earthquake study near Lake Bogoria in the Kenya RiftYoung, Philippa Anne Victoria January 1989 (has links)
A 20 X 30 km2, 15 station, seismic network operated for 3 months in 1985, near Lake Bogoria in the Kenya Rift. The array provided both continuous and triggered seismic data. This thesis is concerned with the local earthquakes which occurred within 30 km of the network, in a 50 X 80 km2 study area including parts of the Rift shoulder and the central trough. 572 small events (ML < 2.7) could be located accurately (+2 km) in 3 dimensions. Unexpectedly, most of the seismic activity is associated with the major faults of the Rift shoulder, rather than the younger, minor faults in the central trough. A linear group of events in the central trough do not correspond to any surface feature, and seem to indicate a buried fault. The depth distribution of the seismicity peaks at 9 km and diminishes below 12 km, and the "brittle-ductile" transition is inferrred to occur within a 12 - 16 km depth range. This distribution is similar to those in other young intracontinental regions, suggesting a normal crustal rheology. Only a few events provided well-constrained focal mechanisms. Normal, steeply dipping, N-S striking fault plane solutions could be fitted to almost all events in the central trough. 12 of the best solutions were used to determine the stress orientation, the results indicated near-horizontal E-W extension, but this direction was poorly constrained. Suitable seismograms displayed shear wave polarisation and splitting compatible with the predictions of Extensive Dilatancy Anisotropy (EDA) theory. Instrinsic anisotropy, due to the basement fabric, is probably present, but the EDA should dominate the observations, thus allowing a determination of present-day stress orientation. Suprisingly, two dominent polarisation directions were seen in different parts of the array, indicating a change from E-W to NW-SE "tension" within the network.
|
218 |
Studies of earthquakes and microearthquakes using near-field seismic and geodetic observationsO'Toole, Thomas Bartholomew January 2013 (has links)
The Centroid-Moment Tensor (CMT) method allows an optimal point-source description of an earthquake to be recovered from a set of seismic observations, and, for over 30 years, has been routinely applied to determine the location and source mechanism of teleseismically recorded earthquakes. The CMT approach is, however, entirely general: any measurements of seismic displacement fields could, in theory, be used within the CMT inversion formulation, so long as the treatment of the earthquake as a point source is valid for that data. We modify the CMT algorithm to enable a variety of near-field seismic observables to be inverted for the source parameters of an earthquake. The first two data types that we implement are provided by Global Positioning System receivers operating at sampling frequencies of 1,Hz and above. When deployed in the seismic near field, these instruments may be used as long-period-strong-motion seismometers, recording displacement time series that include the static offset. We show that both the displacement waveforms, and static displacements alone, can be used to obtain CMT solutions for moderate-magnitude earthquakes, and that performing analyses using these data may be useful for earthquake early warning. We also investigate using waveform recordings - made by conventional seismometers deployed at the surface, or by geophone arrays placed in boreholes - to determine CMT solutions, and their uncertainties, for microearthquakes induced by hydraulic fracturing. A similar waveform inversion approach could be applied in many other settings where induced seismicity and microseismicity occurs.
|
219 |
Crosshole seismic processing of physical model and coal measures dataLeggett, Miles January 1992 (has links)
Crosshole seismic techniques can be used to gain a large amount of information about the properties of the rock mass between two or more boreholes. The bulk of this thesis is concerned with two crosshole seismic processing techniques and their application to real data. The first part of this thesis describes the application of traveltime and amplitude tomographic processing in the monitoring of a simulated EOR project. Two physical models were made, designed to simulate 'pre-flood' and 'post-flood' stages in an EOR project. The results of the tomography work indicate that it is beneficial to perform amplitude tomographic processing of cross-well data, as a complement to traveltime inversion, because of the different response of velocity and absorption to changes in liquid/gas saturations for real reservoir rocks. The velocity tomograms image the flood zone quite accurately. Amplitude tomography shows the flood zone as an area of higher absorption but does not image its boundaries as precisely, because multi-pathing and diffraction effects are not accounted for by the ray-based techniques used. Part two is concerned with the crosshole seismic reflection technique, using data acquired from a site in northern England. The processing of these data is complex and includes deconvolution, wavefield separation and migration to a depth section. The two surveys fail to pin-point accurately the position of a large fault; the disappointing results, compared to earlier work in Yorkshire, are attributed to poorer generation of compressional body waves in harder Coal Measures strata. The final part of this thesis describes the results from a pilot seismic reflection test over the Tertiary igneous centre on the Isle of Skye, Scotland. The results indicate that the base of a large granite body consists of interlayered granites and basic rocks between 2.1 and 2.4km below mean sea level.
|
220 |
Bayesian estimation of resistivities from seismic velocitiesWerthmüller, Dieter January 2014 (has links)
I address the problem of finding a background model for the estimation of resistivities in the earth from controlled-source electromagnetic (CSEM) data by using seismic data and well logs as constraints. Estimation of resistivities is normally done by trial-and-error, in a process called “inversion”, by finding a model of the earth whose responses match the data to within an acceptable error; what comes out of the inversion is what is put into the model by the geophysicist: it does not come out of the data directly. The premise underlying this thesis is that an earth model can be found that satisfies not only the CSEM data but also the seismic data and any well logs. I present a methodology to determine background resistivities from seismic velocities using rock physics, structural constraints, and depth trends. The physical parameters of the seismic wave equation are different from those in the electromagnetic diffusion equation, so there is no direct link between the governing equations. I therefore use a Bayesian framework to incorporate not only the errors in the data and our limited knowledge of the rock parameters, but also the uncertainty of our chosen and calibrated velocity-to-resistivity transform. To test the methodology I use a well log from the North Sea Harding South oil and gas field to calibrate the transform, and apply it to seismic velocities of the nearby Harding Central oil and gas field. I also use short-offset CSEM inversions to estimate the electric anisotropy and to improve the shallow part of the resistivity model, where there is no well control. Three-dimensional modelling of this resistivity model predicts the acquired CSEM data within the estimated uncertainty. This methodology makes it possible to estimate background resistivities from seismic velocities, well logs, and other available geophysical and geological data. Subsequent CSEM surveys can then focus on finding resistive anomalies relative to this background model; these are, potentially, hydrocarbon-bearing formations.
|
Page generated in 0.0167 seconds