• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Boussinesq-type modelling of gently shoaling extreme ocean waves

Yao, Yao January 2007 (has links)
No description available.
2

Numerical modelling of phase-averaged nearshore hydrodynamics using finite volumes and a new Roe-type Riemann solver

MacHardy, Laura C. January 2005 (has links)
No description available.
3

Signal processing methods to improve ocean surface wave estimation from a high frequency surface wave radar

Wang, Wei January 2011 (has links)
High frequency surface wave radars are operated as a remote sensor to measure ocean surface parameters to ranges exceeding 200-300 km from the coastline. The Bragg peaks in the power spectrum of backscattered radar electromagnetic signals from ocean waves reveal the Bragg resonant effect and the second order continuum reflect a hydrodynamic and electromagnetic modulation on the radio waves from the ocean waves. The power spectrum is thus utilized to invert the ocean wave directional spectrum by a non-linear integral equation. Further integrations of the ocean wave directional spectrum yield the estimates of wave parameters: significant waveheight, mean wave period, mean direction, directional spread, etc. Beside sea echoes, non-sea echoes or interferences (collectively termed ‘clutter'), are also received by radar antenna receivers and included in the power spectrum. Clutters which occupy the second order continuum are treated as sea echoes in the inverse algorithm and cause inaccurate estimation of the ocean wave directional spectrum. Thus clutter mitigation is the main purpose of this thesis and is intensively investigated. A three-step image processing approach is proposed in this thesis which could mitigate visible clutters, e.g. radio frequency interferences and ionospheric interferences, and also invisible clutters. The kernel implements a decomposition of the mixture space and then a projection of the mixture space into a desired subspace. In addition to this main approach, various signal processing methods are also investigated for improving the wave estimates, e.g. wavelet analysis, AR modeling, adaptive filtering algorithm. The clutter mitigation scheme is validated by operational use on a whole month of Pisces data and exhibits some improvements in the accuracy of wave estimates. To aid the operational use, a statistical pattern recognition method is also developed. Finally, the best schemes are chained together for a sequential operational use in terms of providing better wave estimation.
4

Nonlinear wave interactions with multiple bodies in close proximity

Peric, Milena January 2012 (has links)
This thesis describes the interaction of waves with multiple bodies in close proximity. The case of two-dimensional fixed bodies is first considered, where large wave excitation is found to occur within the gap between the two bodies at the so-called resonance frequency. The width of the gap is identified as the most important factor in determining this frequency; an increase in the gap width leading to a decrease in the resonance frequency. Subsequently, the effect of the motion of one of the bodies (with a single degree of freedom) is investigated using a newly developed floating-body application of the boundary element method. In the floating-body case, the resonance frequency is found be higher than in the fixed-body equivalent. In addition, a large amplification of the nonlinear water surface elevation within the gap is identified. In order to determine whether the observations within the two-dimensional study can be applied to the practical case of side-by-side offloading of Liquid Natural Gas (LNG), similar investigations are undertaken in a three-dimensional analysis. The latter involves both numerical and experimental studies. The three-dimensional studies confirm the effects identified in the two-dimensional analysis; specifically the effects of the gap width, the motion of one of the bodies, and the nonlinear effects arising within the gap are all clearly established. Furthermore, consideration of both beam-sea and head-sea incident wave conditions eliminates the orientation of the bodies relative to the incident wave direction as a key factor in determining the resonance frequency. Finally, consideration of the motion of the bodies shows that some unexpected higher order motion of the moored body arises when the two bodies have significantly different hydrodynamic properties. As a result, it is concluded that the numerical modelling of side-by-side offloading must be fully nonlinear, incorporate the body motion and include the forcing of the fenders and the mooring lines.
5

Interaction of extreme ocean waves with offshore structures

Walker, Daniel Anthony Guy January 2006 (has links)
With most of the world's untouched oil and gas resources offshore and the possibility that hurricanes are becoming more frequent and more intense, the risks associated with offshore oil and gas production are increasing. Therefore, there is an urgent need to improve current understanding of extreme ocean waves and their interaction with structures. This thesis is concerned with the modelling of extreme ocean waves and their diffraction by offshore structures, with the ultimate aim of proposing improved tools for guiding airgap design. The feasibility of using linear and second order diffraction solutions with a suitable incident wave field to predict extreme green water levels beneath multi-column structures is investigated. Such tools, when fully validated, could replace the need to carry out model tests during preliminary design. When contemplating airgap design it is crucially important that consideration is given to the largest waves in a sea state, the so-called freak or rogue waves. This thesis studies the nature of one specific freak wave for which field data is available, namely the Draupner New Year wave. Unique features of this wave are identified, distinguishing it from a typical large wave, and an estimate of the probability of occurrence of the wave is given. Furthermore, a design wave, called NewWave, is proposed as a good model for large ocean waves and is validated against field and experimental data. The diffraction of regular waves and NewWaves by a number of structural configurations is studied. In order to assess the validity of using diffraction solutions for the purposes of airgap design, comparisons are made with measured wave data from a programme of wave tank experiments. Wave data for a real platform configuration are examined to highlight the key issues complicating the validation of diffraction based design tools for real structures. The ability of diffraction theory to reproduce real wave measurements is discussed. The phenomenon of near-trapping is also investigated, allowing guidelines for airgap design to be established.
6

Solitary waves and wave groups at the shore

Orszaghova, Jana January 2011 (has links)
A significant proportion of the world's population and physical assets are located in low lying coastal zones. Accurate prediction of wave induced run-up and overtopping of sea defences are important in defining the extent and severity of wave action, and in assessing risk to people and property from severe storms and tsunamis. This thesis describes a one-dimensional numerical model based on the Boussinesq equations of Madsen and Sorensen (1992) and the non-linear shallow water equations. The model is suitable for simulating propagation of weakly non-linear and weakly dispersive waves from intermediate to zero depth, such that any inundation and/or overtopping caused by the incoming waves is also calculated as part of the simulation. Wave breaking is approximated by locally switching to the non-linear shallow water equations, which can model broken waves as bores. A piston paddle wavemaker is incorporated into the model for complete reproduction of laboratory experiments. A domain mapping technique is used in the vicinity of the paddle to transform a time-varying domain into a fixed domain, so that the governing equations can be more readily solved. First, various aspects of the numerical model are verified against known analytical and newly derived semi-analytical solutions. The complete model is then validated with laboratory measurements of run-up and overtopping involving solitary waves. NewWave focused wave groups, which give the expected shape of extreme wave events in a linear random sea, are used for further validation. Simulations of experiments of wave group run-up on a plane beach yield very good agreement with the measured run-up distances and free surface time series. Wave-by-wave overtopping induced by focused wave groups is also successfully simulated with the model, with satisfactory agreement between the experimental and the predicted overtopping volumes. Repeated simulations, now driven by second order paddle displacement signals, give insight into second order error waves spuriously generated by using paddle signals derived from linear theory. Separation of harmonics reveals that the long error wave is significantly affecting the wave group shape and leading to enhanced runu-up distances and overtopping volumes. An extensive parameter study is carried out using the numerical model investigating the influence on wave group run-up of linear wave amplitude at focus, linear focus location, and wave group phase at focus. For a given amplitude, both the phase and the focus location significantly affect the wave group run-up. It is also found that the peak optimised run-up increases with the wave amplitude, but wave breaking becomes an inhibiting factor for larger waves. This methodology is proposed for extreme storm wave induced run-up analysis.

Page generated in 0.0121 seconds