• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Groundwater-river interaction in a chalk catchment : the River Lambourn, UK

Grapes, Timothy Rupert January 2004 (has links)
Chalk streams are of high ecological value and are dependent upon groundwater discharge to support flows. This study investigates chalk stream-aquifer interaction, focusing on a near-natural catchment; the River Lambourn of the West Berkshire Downs. The topographic catchment of the Lambourn is 234km², principally underlain by Upper Chalk. The river has a perennial length of c.16km, and a 7.5km seasonal section. Temporal dynamics of the recharge-storage-discharge sequence are investigated using linear regression techniques to identify the lag between recharge and discharge. The effective maximum duration of groundwater flow is 9.1 months, which is used with regional hydraulic gradients to calculate a bulk (interfluve) hydraulic conductivity of 114m/d (using Sy=1%), suggesting that interfluve permeability has been historically underestimated. Spatial flow accretion on the Lambourn is defined from 12 reaches (each 1-2km long), exhibiting mean accretion rates between -0.019 and 0.211 cumecs/km. The accretion rate profile approximates a sinusoidal pattern (λ=12km) suggesting a catchment scale litho-structural control. However, local topography and lithology also exert influence. High accretion rate reaches are associated with major dry valley intersections and elevated valley floor permeability, whilst the presence of Chalk Rock at shallow depths restricts local accretion.

Page generated in 0.015 seconds