• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 156
  • 11
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The baryte deposits of central and southern Scotland

Moore, David J. January 1979 (has links)
No description available.
12

The geology and mineralization of Geevor Tin Mine, Cornwall

Garnett, Richard Herbert Train January 1962 (has links)
No description available.
13

Geology and mineralisation of the Llanharry hematite deposits, South Wales

Williams, Mervyn January 1958 (has links)
No description available.
14

A fluid inclusion and isotopic study of gold-bearing veins in the Transvaal Sequence, South Africa

Anderson, Michael Richard January 1992 (has links)
No description available.
15

Controls on mineralization and ore distribution in the Laisvall Sandstone hosted Pb/Zn deposit, Northern Sweden

Lucks, Timothy J. January 2003 (has links)
No description available.
16

Geochemical records of climatic and environmental change in British holocene tufas :

Garnett, Elizabeth Rose January 2003 (has links)
No description available.
17

Polymetallic, sulphide ore deposits and associated volcanic rocks from, the Harsit river area, N. E. Turkey

Egin, D. January 1978 (has links)
The Pontid magmatic arc developed during the late Cretaceous and early Tertiary as a result of the northward subduction of Tethyan ocean- floor beneath "Pontian Land", due to the relative northwards movement of Anatolia. Two volcanic cycles, both basalt-andesite-dacite-rhyodacite sequences, can be distinguished in the northern Harsit river area. Basic members of the Upper Cretaceous Lower Volcanic Cycle include tholeiitic basalts and andesitic lavas. They are overlain by dacite lavas. Only the waning stage of this cycle, the rhyolites, tuffs and breccias, contain abundant pyroclastics. This stage is closely related to the mineralisation and constitutes the host-rock horizon. The host-rock and its associated mineralisation show spatial association with the regional fault pattern. The early Tertiary, Upper Volcanic Cycle shows evidence of explosive vulcanicity in the basalts of the Upper Basic Series. Dacites and rhyodacites are locally developed and again show spatial association with the faulting. Both the major and trace element chemistries of the two volcanic cycles Udemonstrate the clear separation into a lower tholeiitic and an upper calc-alkaline cycle. The rocks show similar chemistry to volcanics from island arcs in other areas. The origin of the tholeiitic magma is ascribed to melting of "dry" amphibolite formed by metamorphism of Tethyan oceanic crust during early subduction. Fractional crystallisation of this magma has led to the development of the Lower Volcanic Cycle. The calc-alkaline magma is thought to have formed during a later stage in the subduction process when melting of amphibolite was joined by melting of biotite or phlogopite. This produced a relatively "wet" magma which suppressed plagioclase fractionation until a late stage and prevented enrichment of iron in the residual melts. The volatiles produced in this process may have promoted some melting of Iherzolite overlying the subducted slab. A "high-level" fractional crystallisation of the calc-alkaline magma is thought to have yielded the Upper Volcanic Cycle. Massive, polymetallic mineralisation is associated with the final phase of the Lower Volcanic Cycle. The mineralisation is characterised by a sequence in which a quartz-pyrite and/or sphalerite and chalcopyrite stockwork ore is overlain by massive ore containing galena, sphalerite, chalcopyrite, barite and sulphosalts. This is, in turn, overlain by a horizon in which barite is dominant, succeeded by hematitic and/or manganiferous tuffs and sediments. The ore deposits, in their mode of occurrence, in their mineralogy and morphology bear close resemblance to the Kuroko deposits found in the Miocene, tholeiitic, felsic volcanic rocks of Japan. The lack of evidence for the derivation of ore fluids from igneous activity during the Tertiary era, and the unmineralised nature of the early differentiates of the Lower Volcanic Cycle restrict the mineralising episode to a short period of the felsic, Upper Cretaceous volcanism. The ore fluids responsible for the ore-bodies are thought to be the metal-rich fluids that separated during the final stage of fractionation and solidification of the tholeiitic silicate magma. The ascending magmatic ore solutions interacted with.-sea water. This process resulted in the exchange of Co, Ni, Se, Mg, Ca, Na and K, in a decrease in temperature and salinity, and in an increase in the oxidation state and pH relative to the initial composition of the magmatic fluids. Lithogeochemical analysis and wall-rock alteration patterns in the host-rock and hanging wall may be used in conjunction with detailed stratigraphical and structural analysis to provide directional vectors to determine the proximity of ore bodies.
18

Sediment budget for a North Pennine upland reservoir catchment, UK

Holliday, Victoria Jane January 2003 (has links)
Sediment delivery from upland fluvial systems in the UK is of considerable importance in catchment management. However, scarcity of detailed data on sediment sources, storage and linkages between geomorphic processes inhibits current understanding of such systems. A sediment budget for an un-gauged, upland catchment at Burnhope Reservoir (North Pennines, UK) has been developed that couples catchment sediment sources and suspended sediment dynamics to reservoir sedimentation and; quantifies historic and contemporary sediment yields. Stream-side scars and cut banks are the dominant catchment sediment sources with greatest connectivity in first order tributaries during high discharge events. The catchment sediment system is supply-limited and sediment exhaustion occurs on an intra and inter-storm event basis. Bathymetric surveys, core transects and aerial photographs were used to assess spatial variability in sediment accumulation in the reservoir. Physical and radiometric analysis ((^137)Cs) of core sediments provided estimates of dry bulk density, particle size variations and a sedimentation chronology. Total reservoir sedimentation over the 67 year period has been estimated at 592 t yr(^1) ± 10% (33.3 t km(^-2) yr(^1)) with average sedimentation rates of 1.24 and 0.77cm yr(^-1)calculated from the distal and proximal areas of the reservoir respectively. Inputs of fine suspended sediment from direct catchwater streams accounts for 54% of sediment supply to the reservoir (best estimate yield of 318 t yr(^-1) ± 129%), while inputs from the actively eroding reservoir slopes and shorelines contribute a gross yield of 328 t yr(^-1) + 92%. However, 70% of sediment from shoreline erosion is >2 mm diameter and is stored on the shoreline and toe slopes. The remaining 30% (98.41) of fine sediment is transferred to deep-water reservoir storage. This highlights the importance of shoreline erosion and sediment storage in the overall budget. Error analysis of the sediment balance equation enabled the residual sediment inputs from ungauged tributary streams to be estimated (232.6 t yr(^-1) ± 394.9%). The specific sediment yield of 33.3 t km(^-2) yr(^-1) to Burnhope Reservoir is relatively low. It is 40% lower than the average yield of 84 t km(^-2) yr(^-1) estimated from British storage reservoirs (DETR, 2001) and an order of magnitude lower than estimates from South Pennine reservoirs. Analysis of the particle size of core sediments showed abrupt increases in sand-sized particles in the top 20 cm of the cores (late 1970s onwards). This is related to the diverging trends in winter and summer-centred rainfall records and rapidly fluctuating reservoir levels. The sediment budget approach together with the chronology of reservoir sedimentation identifies the main sediment transfer pathways in the Burnhope catchment, and provides evidence of both extrinsic and intrinsic controls on sediment transfer and deposition.
19

Faulting, fault zone processes and hydrocarbon flow through three-dimensional basin models

Clarke, Stuart January 2001 (has links)
No description available.
20

The role of magma contamination in the genesis of komatiitic nickel sulphide deposits, Kambalda, Australia

Evans, David Morris January 1989 (has links)
No description available.

Page generated in 0.0323 seconds