• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Creep and fatigue properties of tendon

Wang, Xiao Tong January 1993 (has links)
No description available.
2

Genetics of tendon properties : in vivo studies in asymptomatic men and women

Foster, Brandon Paul January 2013 (has links)
In recent years, research interest has increased regarding the influence of genetic factors on health, physical activity, and sports research. This is achieved through research study designs including ‘genetic variation’ as an independent variable. These studies aim to link gene variants (common difference in the genome of a population) with a trait of interest (phenotype), known as ‘genetic association’. Albeit, these genetic factors potentially only have a small influence. The aims of the present study were to determine the gene variants within genes that encode for proteins involved in homeostatic balance of tendon physiology, and the contribution to interindividual variability in patellar tendon structural and mechanical properties. Genotype and phenotype data was collected from 84 asymptomatic men and women (aged 18-39 years). Gene variants in the COL5A1 and MMP3 genes were not associated with the variability in the patellar tendon phenotypes, in either sex (COL5A1 rs12722 –Male/Female - Volume, P = 0.936/0.938; Young’s Modulus, P = 0.897/0.227; Z-scores, P = 0.635/0.896: MMP3 679620 & 591058 – Male/Female – Volume, P = 0.796/0.532; Young’s Modulus, P = 0.238/0.680; Z-scores, P = 0.346/0.862: MMP3 650108 – Male/Female – Volume, P = 0.952/0.676; Young’s Modulus, P = 0.170/0.557; Z-scores, P = 0.681/0.531). Furthermore, a polygenic profile including these gene variants could not account for the interindividual variability in patellar tendon properties (Male/Female - Volume, P = 0.359/0.949; Young’s Modulus, P = 0.073/0.067; Z-scores, P = 0.110/0.579). In conclusion, the data suggest that tendon properties are not influenced by the genetic variants studied here. In addition, there are no sex-specific associations. The research on gene variants and their influence on the risk of tendon injury and tendon properties remain quite limited, and the preliminary nature of this research, makes potential genetic influences difficult to quantify at this time. Continued investigations are encouraged into these genes/proteins named here (MMP3, COL5A1), as well as others that may influence the maintenance of tendon homeostasis. Future advances in determining the genetic components of tendon properties in an asymptomatic population may have implications for our understanding of the aetiology of tendinopathies, as well as physical performance potential.
3

Strain related differential regulation of tendon extracellular matrix proteins

Avella, Charlotte Sinclair January 2010 (has links)
No description available.

Page generated in 0.0201 seconds