• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions and functions of rotavirus non-structural proteins NSP1 and NSP3

Chung, Keun-Taik January 2004 (has links)
No description available.
2

Molecular and functional characterization of the group B rotavirus enterotoxin non-structural protein 4

Guzman, Efrain January 2004 (has links)
No description available.
3

Single molecule fluorescence studies of viral transcription

Periz Coloma, Francisco Javier January 2014 (has links)
Rotaviruses are the single most common cause of fatal and severe childhood diarrhoeal illness worldwide (>125 million cases annually). Rotavirus shares structural and functional features with many viruses, such as the presence of segmented double-stranded RNA genomes selectively and tightly packed with a conserved number of transcription complexes in icosahedral capsids. Nascent transcripts exit the capsid through 12 channels, but it is unknown whether these channels specialise in specific transcripts or simply act as general exit conduits; a detailed description of this process is needed for understanding viral replication and genomic organisation. To test these opposing models, a novel single-molecule assay was developed for the capture and identification (CID) of newly synthesised specific RNA transcripts. CID combines the hybridisation of transcripts with biotinylated and FRET compatible labelled ssDNAs with the implementation of recent developments in single molecule fluorescence such as alternating laser excitation (ALEX) and total internal reflection fluorescence (TIRF) microscopy. CID identifies and quantifies specific transcripts of rotavirus based on a FRET/Stoichiometry (E*/S) value of the hybridised labelled probes. I used CID to pull down the capsid on the surface slide and identify partially extruded transcripts of three different segments 2, 6 and 11. The findings presented in this thesis support a model in which each channel specialises in extruding transcripts of a specific segment, that in turn is linked to a single transcription complex. The method can be extended to study other transcription systems including E.coli, and can be further developed as a potential diagnostic tool.

Page generated in 0.0171 seconds