• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 8
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GerT, an ion transporter homologue in Bacillus cereus and its role in spore germination

Senior, Adam Paul January 2005 (has links)
No description available.
2

The role of autolysins and other components in Bacillus subtilis cell wall structure determination

Hansen, Jonathan January 2004 (has links)
No description available.
3

The function of ExsY and CotY, two structural proteins of the Bacillus cereus exosporium

Johnson, Matthew J. January 2004 (has links)
No description available.
4

Structural studies on proteins from B. anthracis

Carter, Lester G. January 2006 (has links)
No description available.
5

The phosphate stimulon of Bacillus subtilis

Allenby, Nicholas E. E. January 2004 (has links)
No description available.
6

Helicase loading in Gram-positive Bacillus

Ioannou, Charikleia January 2006 (has links)
No description available.
7

Population structure of the Bacillus cereus group

Barker, Margaret January 2006 (has links)
The Bacillus cereus group of bacteria comprises B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis and B. weihenstephanensis. Species status has been allocated to these taxa largely according to pathogenic properties. B. anthracis is the causative agent of anthrax in ungulates and humans. B. thuringiensis is primarily an insect pathogen and B. cereus is associated with food poisoning and occasionally soft tissue infections in humans. One hundred and forty-six strains of the B. cereus group were examined by multilocus sequence typing (MLST) in which partial sequences for seven housekeeping genes (glpF, gmk, ilvD, pta, pur, pycA and tpi) were generated to provide a definitive sequence type (ST) for each strain. Statistical analyses of the data using pairwise comparisons between groups for (i) Fst (gene flow), (ii) shared mutations and (iii) fixed differences confirmed that the present designation of separate species status for members of the B. cereus group was inappropriate. Comparison of neighbour joining (NJ) trees derived from the concatenated sequence data with trees constructed for each allele individually indicated limited recombination between strains and a largely clonal structure to the group. Three major clades were recovered: clade 1 was made up of B. anthracis, B. cereus and rare B. ringiensis strains; clade 2 comprised a heterogeneous mixture of B. thuringiensis and B. cereus strains while clade 3 was composed of strains of B. cereus, B. mycoides and B. weihenstephanensis. Two B. pseudomycoides strains were distant outliers from the main tree. Four lineages were recognised in both clades 1 and 2 based on shared mutations within the lineages and fixed differences between them. B. anthracis strains and the emetic toxin-producing strains of B. cereus formed two clones within clade 1. A clonal group of entomopathogenic B. thuringiensis strains was identified in clade 2 and named the ‘Sotto’ lineage (after the predicted founder group). Strains of B. cereus that had been isolated from human wound infections and septicaemia, on the other hand, were distributed over clades 1 and 2, and were not restricted to a particular clonal group. Similarly, some serotypes of B. thuringiensis were found to have a clonal structure while others were heterogeneous. Representative strains from several serotypes of B. thuringiensis were examined by the RAPD (random amplified polymorphic DNA) method. Serovars israelensis and thuringiensis were strongly clonal, morrisoni and tolworthi were partially clonal while darmstadiensis and canadensis were heterogeneous. Serotype, MLST profile and RAPD did not always correlate with delta-endotoxin cry gene content. This may be due to the cry genes being located on plasmids and subject to transfer between strains. MLST does not support the separate species status of B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis and B. weihenstephanensis and an alternative classification based on DNA sequence data is proposed based on three main clades with nine distinct lineages. The proposed lineages were named to be consistent with current nomenclature, as far as possible.
8

Biophysical investigations of the mechanism of colicin translocation

Hands, Sarah Louise January 2005 (has links)
Colicins are a family of bacterial toxins, which kill Escherichia coli cells and other closely related species. Their mode of action requires binding to an outer membrane receptor, translocation across the outer membrane and periplasm and cytotoxic action on a specific target. Colicins usually kill cells either by attacking the bacterial RNA or DNA or by forming pores in the inner membrane of the cell. Their cytotoxic activity can be inhibited by the high affinity binding of an immunity protein. For Group A colicins, translocation requires interaction between the N-terminal domain of the colicin and a series of membrane bound and periplasmic proteins called the Tol system (TolB, TolR, TolA, TolQ and Pal). Three residues of colicin E9 have previously been shown to be essential for an interaction with TolB. This study suggests that these residues play differing roles in the interaction with TolB. Other residues surrounding these previously identified residues are also shown to be involved in the interaction with TolB. In order to allow cytotoxicity, the immunity protein of colicins E3 and E9 must be lost on entry of the colicin to a target cell. This work has demonstrated by Surface Plasmon Resonance and Atomic Force Microscopy that the affinity of colicins E3 and E9 for TolB is increased when the immunity protein is removed. This observation has implications for the mechanism by which the immunity protein dissociates from the colicin. Finally this study has used Surface Plasmon Resonance to explore differences between pore-forming and enzymatic colicins in their interactions with Tol proteins. Although the pore-former colicin A interacts with TolR, TolA and TolB, the endonuclease colicins E3 and E9 were shown only to interact with TolB. This suggests that pore-forming and endonuclease colicins use the Tol system in different ways in order to translocate across the periplasm.

Page generated in 0.0125 seconds