• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution and conservation of Commidendrum and Elaphoglossum from St. Helena

Eastwood, Antonia January 2002 (has links)
St Helena is an isolated volcanic island (lat. 15° 56'S, long. 5°42'W) in the South Atlantic Ocean. The endemic flora of St Helena, comprised of 49 plant species, is considered to be one of the most threatened in the world. This thesis investigates the evolution and conservation of two threatened groups of plants endemic to St Helena: i) trees in the genera Commidendrum and Melanodehdron (Asteraceae) and ii) epiphytic and terrestrial elaphoglossoid ferns in the genera Elaphoglossum and Microstaphyla (Lomariopsidaceae)Chapter two investigates species relationships of Commidendrum and Melanodendron using the ITS region of ribosomal DNA. Despite showing a range of morphological and ecological variation the four species of Commidendrum form a closely related monophyletic group. Melanodendron integrfolium is sister to Commidendrum indicating that the two genera evolved from a common ancestor which arrived to St Helena via a single dispersal event. The role of heterochrony in the evolution of Commidendrum is discussed. Chapter three investigates self-incompatibility and hybridisation in two of the most threatened Commidendrum species, C. rotundfolium and C. spurium. RAPD data indicated the presence of hybrids in the seed orchards of C. rotundfolium and C. spurium. Self-incompatibility in C. rotundfolium and C. spurium was investigated using a series of pollination experiments which examined pollen-stigma interaction at the stigma interface. Both C. rotundifolium and C. spurium possess a sporophytic self-incompatibility system, and poor seed viability in C. rotundfolium is due to a paucity of S-alleles. The conservations implications of this and interspecific hybridisation are discussed. Chapter four investigates the evolutionary relationships of the four elaphoglossid ferns, E. dimorphum, E. nervosum, E. conforme and M furcata from St Helena using sequences of the chloroplast trnL intron (partial) and trnL-F intergenic spacer. The investigation revealed the close relationship of E. nervosum, E. dimorphum and Mi furcata, whilst E. conforme was found to be distantly related. Microstaphyla furcata is shown to belong to Elaphoglossum confirming the previous transfer of this species to Elaphoglossum bfurcatum. Species relationships of the endemic Elaphoglossum, and the extent and distribution of population genetic diversity were investigated using allozyme analysis in chapter five. As well as supporting the relationships of the taxa in the molecular phylogeny, the allozyme data suggest a hybrid origin of E. dimorphum between E. nervosum and E. bfurcatum. In addition the allozyme data revealed significant genetic differentiation in populations of E. nervosum and E. bfurcatum which should be taken into consideration in any future conservation programme. To conclude, Chapter 5 is a general discussion on the evolution and conservation of island plants, highlighting my research findings from St Helena and comparing it to other studies.
2

Global change and predator-prey interactions on a woody perennial

Hentley, William Thomas January 2014 (has links)
The impacts of global change on ecosystems from climate change and invasive species are likely to be complex. Rising atmospheric CO2 concentrations, the associated climate forcing and greater frequency of extreme weather are serious challenges to natural ecosystems. In tandem with climate change, globalisation has led to the spread of invasive alien species around the globe that threaten to interrupt food web dynamics. Advancing understanding of the effects of global change on trophic interactions therefore requires study of interspecific and multi-trophic interactions. The aim of this thesis was to examine how host-plant heterogeneity, native–invasive species interactions and climate change effects (elevated atmospheric CO2 (eCO2) or drought) influence trophic interactions. An experimental approach was used which centred on a study system comprising the European raspberry (Rubus idaeus), the herbivorous large raspberry aphid (Amphorophora idaei) and coccinellid beetle predators (native species: Adalia bipunctata, Coccinella septempunctata; invasive alien species Harmonia axyridis). Under eCO2, R. idaeus resistance to A. idaei was unchanged for two cultivars (Glen Clova, Glen Ample) partially susceptible to A. idaei, but significantly reduced for another (Octavia) with complete resistance in ambient climatic conditions. The inclusion of a coccinellid predator, however, mitigated the reduction in the resistance of Octavia by reducing aphid abundance. Behavioural responses to predation by A. idaei were also impaired under eCO2 after feeding on Glen Ample. The role of natural enemies in controlling herbivore abundance in future climates is therefore crucial. Native coccinellid species are currently declining in much of Europe, attributed to the occurrence of the invasive species, H. axyridis. Despite the declines in native coccinellid species, it was found that behavioural modification to feeding by both native and invasive coccinellid species can, theoretically, result in coexistence. Plant resistance in a future climate is likely to be modified significantly. Reduced resistance to aphid herbivory demonstrated here mirrors previous studies, highlighting the future importance of natural enemies to control aphid abundance. Changes to the abundance and behaviour of aphid prey and intraguild predators will modify the effectiveness of native and invasive natural enemies. Further mechanistic research is required to understand multi-trophic interactions in dynamic environments.

Page generated in 0.0235 seconds