1 |
Design, modelling, and characterisation of millimetre-wave antennas for 5G wireless applicationsJilani, Syeda Fizzah January 2018 (has links)
Future 5G systems and beyond are expected to implement compact and versatile antennas in highly densifi ed millimetre-wave (MMW) wireless networks. This research emphasises on the realisation of 5G antennas provided with wide bandwidth, high gain, adaptable performance, preferably conformal implementation, and feasible bulk fabrication. Ka{band (26.5{40 GHz) is selected based on recent 5G standardisation, and novel antenna geometries are developed in this work on both rigid and flexible substrates by implementing advanced techniques of frequency reconfi guration, multiple-input-multiple- output (MIMO) assembly, as well as wideband and multiband antennas and arrays. Nove lMMW wideband antennas are presented for 5G and spatial diversity at the antenna front-ends is substantially improved by deploying wideband antennas in a MIMO topology for simultaneous multiple-channel communication. However, wideband operation is often associated with efficiency degradation, which demands a more versatile approach that allows the adaptable antenna to select the operating frequency. In this research, high performance recon figurable antennas are designed for frequency selection over Ka- {band. Also, an efficient and conformal antenna front-end solution is developed, which integrates both frequency recon guration and MIMO technology. Gain of the antenna is critically important for 5G systems to mitigate high propagation losses. Antenna design with both high gain and bandwidth is challenging as wideband antennas are traditionally gain-limited, while antenna arrays deliver high gain over a narrow bandwidth. An Enhanced Franklin array model is proposed in this thesis, which aggregates multiband response with high gain performance. Furthermore, novel flexible monopole antenna and array con gurations are realised to attain high gain profi le over the complete Ka{band. These proposed 5G antennas are anticipated as potential contribution in the progress towards the realisation of future wireless networks.
|
2 |
Low Complexity Hybrid Precoding and Combining for Millimeter Wave SystemsAlouzi, Mohamed 27 April 2023 (has links)
The evolution to 5G and its use cases is driven by data-intensive applications requiring higher data rates over wireless channels. This has led to research in massive multiple input multiple output (MIMO) techniques and the use of the millimeter wave (mm wave) band. Because of the higher path loss at mm wave frequencies and the poor scattering nature of the mm wave channel (fewer paths exist), this thesis first proposes the use of the sphere decoding (SD) algorithm, and the semidefinite relaxation (SDR) detector to improve the performance of a uniform planar array (UPA) hybrid beamforming technique with large antenna arrays. The second contributions of this thesis consist of a low-complexity algorithm using the gradient descent for hybrid precoding and combining designs in mm wave systems. Also, in this thesis we present a low-complexity algorithm for hybrid precoding and combining designs that uses momentum gradient descent and Newton’s Method for mm wave systems which makes the objective function converge faster compared to other iterative methods in the literature; the two proposed low-complexity algorithms for hybrid precoding and combining do not depend on the antenna array geometry, unlike the orthogonal matching pursuit (OMP) hybrid precoding/combining approach. Moreover, these algorithms allow hybrid precoders/combiners to yield a performance very close to that of the optimal unconstrained digital precoders and combiners with a small number of iterations. Simulation results verify that the proposed hybrid precoding/combining scheme that uses momentum gradient descent and Newton’s Method outperforms previous methods that appear in the literature in terms of bit error rate (BER) and achievable spectral efficiency with lower complexity. Finally, an iterative algorithm that directly converts the hybrid precoding/combining in the full array (FA) architecture to subarray (SA) architecture is proposed and examined in this thesis. It is called direct conversion of iterative hybrid precoding/combining from FA to SA (DCIFS) hybrid precoding/combining. The proposed DCIFS design takes into consideration the matrix structure of the analog and baseband precoding and combining in the design derivation. Moreover, it does not depend on the antenna array geometry, unlike other techniques, such as the orthogonal matching pursuit (OMP) hybrid precoding/combining approach, nor does it assume any other constraints. Simulation results show that the proposed DCIFS hybrid design, when compared to the FA hybrid designs counterpart, can provide a spectral efficiency that is close to optimum while maintaining a very low complexity and better spectral efficiency than the conventional SA hybrid design with the same hardware complexity.
|
Page generated in 0.0468 seconds