• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 38
  • 32
  • 17
  • 9
  • 9
  • 2
  • Tagged with
  • 3029
  • 1186
  • 1180
  • 1172
  • 1169
  • 86
  • 75
  • 56
  • 51
  • 50
  • 49
  • 48
  • 36
  • 35
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Preparation and analysis of type 1/type 11 collagens for tissue engineering scaffolds

Walton, Robin S. January 2010 (has links)
No description available.
162

Analysis of mouse Runx1 alternative promoter activity during hematopoietic stem cell emergence

Bee, Thomas January 2009 (has links)
No description available.
163

Development of individualised whole heart models with para-cellular resolution

Burton, Rebecca-Ann Beatrice January 2010 (has links)
No description available.
164

The role of the extracellular matrix in human embryonic stem cell renewal vs differentiation

Hewman, Rachel Esther January 2009 (has links)
No description available.
165

Numerical and computational methods for simulating multiphase models of tissue growth

Osbourne, James January 2009 (has links)
No description available.
166

Efficient Haptic and Visual Soft Tissue Deformation using a Particle-Based Approach

Buckley, Oliver January 2009 (has links)
No description available.
167

Tissue engineering osteochondral composites using mesenchymal stem cells

Palmer, `Simon Buzz Lee January 2009 (has links)
No description available.
168

Analysis of human bone marrow-derived cells on collagen-based biomatrices for tissue reconstruction

Arca, Turkan January 2009 (has links)
No description available.
169

Design of Nonwoven Scaffold for Tissue Engineering of The Anterior Cruciate Ligament for Dynamic Culture

Durham, Elaine January 2009 (has links)
No description available.
170

The aristaless-related homeobox gene, ARX, during the forebrain development : its crucial role in the organization and differentiation of the ventral telencephalon

Colombo, Elena January 2007 (has links)
Mutations in the human ARX gene, which encodes a highly conserved homeodomain containing transcription factor, have recently been identified in children with various neurological disorders, including infantile spasms syndrome and mental retardation (ISSXlMR; Stromme et al., 2002; Kato et al., 2004), dystonia (Bienvenu et al., 2002) and X-linked lissencephaly with ambiguous genitalia (XLAG) (Kitamura et al., 2002). Lissencephaly is characterized by smooth cerebral surface (agyria or pachygyria), abnormally thick cortex, deficient cortical layering and diffuse neural heterotopias (Kato and Dobyns, 2003). Compelling experimental evidences have shown that this phenotype arise by an aberrant radial migration, a mechanism by which normally neuroblasts reach their final location in the cortical field (Walsh and Goffinet, 2000). The murine ortholog Arx is expressed in the nervous system primarily during embryonic development and is characterized by a dynamic expression pattern, appearing during both early shaping of the forebrain and later major events of neural migrations and cell-type specification. Herein, I show that Arx presents a different pattern of expression in the dorsal and ventral forebrain. In fact, while it is strongly expressed in the proliferating ventricular zone (VZ) of the developing cortex; Arx shows strong expression in differentiated cells of the mantle zones of the lateral and medial ganglionic eminences (LGE and MGE). The LGE and MGE are sources of tangentially migrating young neurons spreading into the developing cortical plate and fated to differentiate into GABAergic interneurons. Arx expression is detectable in the interneurons of the adult cerebral cortex, restricted to a population ofGABAergic neurons (Colombo et aI., 2004) To gain insight into the potential function of Arx gene during development, loss-offunction mutant mice were generated by homologous recombination in embryonic stem (ES) cells by Collombat et al. (2003). Arx mutant mice die perinatally due to hypoglygemia related to pancreatic defects. Arx deficient brains are found dramatically altered, exhibiting poorly developed olfactory bulbs and reduced cerebral cortex and hippocampus (Kitamura et aI., 2002). Moreover, GABAergic neurons originating from the sub-pallium exhibit an aberrant migration toward the cerebral cortex, inducing a decrease in the number of cortical GABAergic intemeurons (Kitamura et aI., 2002). Unfortunately, the perinatal death of these mice do not allow any correlation of these specific alterations with the neurological manifestations observed in human. I ~ake advantage ofArx mutant mice as a model to characterize the cellular and molecular , mechanisms underlying the basal ganglia alterations. In these animals, the early differentiation of this tissue appear normal, whereas subsequent neurogenesis is impaired, leading to an accumulation of periventricular immature neurons in both the LGE and' MGE. Both tangential migration toward the cortex and striatum, as well as radial migration to the globus pallidus and striatum, are dramatically affected in mutants, causing an accumulation of NPY+ or calretinin+ neurons in the MGE periventricular domain. Notably, Arx mutant neurons retain their differentiation potential in vitro, but fail to show a sustained migration ability. This migration alteration is further associated with an abnormal morphology of Arx mutant cells. My findings imply that Arx dependent cell-autonomous defects in migration activity may impinge on the final neuronal localization and maturation in situ. Furthermore, Arx mutants lack a large fraction of cholinergic neurons and display a strong impairment of thalamo-cortical projections where major axon fiber tracts failed to traverse the basal ganglia. Altogether, these results underline a critical function of Arx in promoting neural migration and regulating neural differentiation of basal telencephalic structures in mice and suggest a similar role in human as outlined in XLAG patients.

Page generated in 0.0235 seconds