• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 53
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Acquisition of renogenic competence in the early mouse embryo and embryonic stem cells

Ganeva, Veronika Veskova January 2011 (has links)
The acquisition of renogenic competence (the ability to give rise to kidney) during embryonic development is not yet fully understood. Clarifying the temporal and molecular aspects of this process is equally essential for understanding excretory system development and for devising methods for successful differentiation of embryonic stem cells (ESCs) to renal cells for disease modeling, toxicology screening and potential cell replacement therapies. In embryo development, the metanephric (permanent) kidney arises as a result of inductive interactions between two embryonic structures that arise in the intermediate mesoderm - the ureteric bud (UB, a diverticulum of the Wolffian duct) and the metanephric mesenchyme (MM). The UB develops into the collecting duct system and the MM undergoes an epithelial-to-mesenchymal transition to form the secretory units of the kidney - the nephrons. In this thesis, I used a tissue disaggregation-reaggregation method that allows the reconstruction of mouse organotypic kidney rudiments to place different embryonic cells in the environment of a developing kidney and assess their potential to integrate into kidney epithelia and differentiate to renal cells. First, the suitability of this method was evaluated and a quantitative assay for evaluating the numbers of test cells integrating in various renal compartments was developed. Second, the reaggregation method was used to characterise the renogenic potential of undifferentiated mouse ESCs, ESC-derived cells after Notch inhibition, and cells derived from the presumptive nephrogenic regions of embryos at various stages of development. ESCs are isolated from the inner cell mass of an embryo and have the potential to differentiate to any tissue of the body when injected into mouse blastocysts. Strategies have successfully been devised for ESC differentiation to many lineages, but very few studies reported any success with the differentiation of ESCs to a renal lineage. Undifferentiated ESCs showed a very good ability to form chimeric structures with developing kidney tubules (both nephrons and extending UBs). Nevertheless, the resulting structures were morphologically different from renal epithelia in most cases and integrated ESC-derived cells were not positive for several combinations of kidney markers. These results suggested that the influence of the niche was not sufficient for a successful ESC differentiation to renal cells. Treatment of ESC with an inhibitor of the Notch pathway to increase the proportion of mesodermal cells did not improve this outcome. On the basis of these results, it was speculated that the earliest lineage to which embryonic stem cells must be differentiated in order to become competent to make renal cells should first be identified. I addressed this by determining the developmental stage at which cells able to contribute to the formation of metanephric epithelia first appear in mouse embryo development. When mixed in embryonic kidney reaggregates labelled cells isolated from the nephrogenic regions of E9.5 embryos integrated into various renal compartments. These cells were seen in UBs, nephrons, glomeruli and the condensing mesenchyme. Marker expression studies showed that the exogenous E9.5 cells expressed an array of kidney markers - Pax2 in renal epithelia and the condensing mesenchyme, Wt1 in glomeruli and Six2 in the condensing mesenchyme. Furthermore, exogenous E9.5 cells also co-expressed Pax2/Wt1 in the condensing mesenchyme, Megalin/Ecadherin in the proximal tubule and Pax2/E-cadherin in renal epithelia. This provides evidence that challenges the existing model and suggests that some cells from the intermediate mesoderm at a stage where the metanephric blastema is yet formed are competent to contribute to kidney structures. Furthermore, experiments with E8.5 embryos showed that such a renocompetence could be acquired even before the specification of intermediate mesoderm. These findings contribute to our knowledge about kidney cell specification and provide valuable information to guide future attempts to develop an efficient method for deriving renal cells from ESCs. Furthermore, the reported ability of ESC-derived non-kidney cells to form chimeric structures with renal tubules provides a proof-of-principle that it might be possible to use exogenous types of cells for physiological support to injured kidney tubules, thus offering a possible novel approach for cell replacement therapies.
52

Studies on renal basement membranes

Cotter, Thomas G. January 1979 (has links)
No description available.
53

Mechanisms of epithelial branching, nephrogenesis, and the role of the Rho-GTPase family in kidney development

Lindström, Nils Olof January 2009 (has links)
The metanephric kidney consists of two types of epithelia; the Wolffian duct-derived ureteric bud and the nephrogenic components that originate from mesenchymal-toepithelial transitions in the metanephric mesenchyme. The ureteric bud forms when inductive signals from the metanephric mesenchyme stimulates the evagination of an epithelial tube from the Wolffian duct into the mesenchyme. Reciprocal signalling between the ureteric bud and the metanephric mesenchyme regulates the branching of the ureteric bud and the induction of nephron formation. Inductive and inhibitory signalling of ureteric bud growth and branching has been shown by several protein families, however, the mechanical aspects of ureteric bud branching and nephrogenesis are largely unknown. I investigated the roles of Rac1-GTPase and Rho-kinase during kidney development. These proteins are important regulators of the cytoskeleton where Rac1 is a promoter of actin filament polymerisation and Rho-kinase directly stimulates the formation and contraction of actin-myosin stress fibres. Using a cell-permeable inhibitor, Rac1 was inhibited with no effects on nephron formation or subsequent segmentation and patterning. Inhibition of active Rac1 significantly reduced the level of ureteric bud branching and also resulted in lower proliferation rates. Rho-kinase was similarly targeted using two inhibitors. Rho-kinase inhibition had important effects on nephron formation and nephron maturation. Inhibition of Rhokinase resulted in decreased levels of nephron formation and severely morphologically abnormal nephrons. The formation of apical-basal polarity was disturbed as was the development of the visceral and parietal epithelia; precursors of the renal corpuscle. Inhibition of Rho-kinase led to abnormal formation of the proximal-distal axis and abnormal segmentation of the nephron. The effects of Rho-kinase inhibition were partially mimicked by direct targeting of actin-myosin contractions using a myosin-ATPase inhibitor. This demonstrated that Rho-kinase is necessary during multiple stages of nephrogenesis and maturation, at least in part, as a result of its ability to regulate actin-myosin contraction. These results show that Rac1 and Rho-kinase play important roles during several aspects of kidney development and highlights the significance of further investigating the mechanisms involved during kidney organogenesis.

Page generated in 0.0287 seconds