• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 7
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tissue engineering of the cornea

Cooper, Leanne Jane January 2003 (has links)
No description available.
2

Inflammation, immunological privelege and rejection of corneal transplants

Banerjee, Sanjiv January 2005 (has links)
No description available.
3

The effect of adenovirally derived and recombinant CTLA4-Ig protein in corneal transplantation

Comer, Richard Michael January 2003 (has links)
No description available.
4

The culture of human limbal epithelium for transplantation

Ahmad, Sajjad January 2007 (has links)
No description available.
5

Post-genomic characterisation of structure and constituents of amniotic membrane

Hopkinson, Andrew January 2005 (has links)
No description available.
6

Adhesion molecule expression in corneal transplantation : a target for therapy?

Kerouedan, Christelle January 2003 (has links)
No description available.
7

Novel hydrogels for keratoprosthesis

Li, Jifan January 2001 (has links)
Hydrogels may be described as cross~linked hydrophilic polymers that swell but do not dissolve in water. They have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers. This project is focused on the development of novel hydrogels for keratoprosthesis (KPro). The most commonly used KPro model consists of a tansparent central stem witb a porous peripheral skirt. Clear poly (methyl methacrylate) (PMMA) core material used in the Strampelli KPros prosthesis has not been the cause of failure found in other core and skirt prostheses. However, epithelialization of this kind of solid, rigid optic material is clearly impossible. The approach to the development of a hydrogeJ for potential KPro use adopted in this work is to develop soft core material to mimic the properties of the natural cornea by incorporating some hydrophilic monomers such as N, N-dimethyacrylamide (NNSMA) N~vinyl pyrrolidone (NVP) and acryloylmorpholine (AMO) with methyl methactylate (MMA). Most of these materials have been used in other ophthalmic applications, such as contact lens. However, an unavoidable limitation of simple .MMA copolymers as conventional hydrogels is poor mechanical strength. The hydrogel for use in this application must be able to withstand the stresses involved during the surgical procedure involved with KPro surgery and the in situ stresses such as the deforming force of the eyelid during the blink cycle. Thus, semi-interpenetrating polymer networks (SIPNs) based on ester polyurethane, AMO, NVP and NNDMA were examined in this work and were found to have much improved mechanical properties at water contents between 40% and 70%. Polyethylene glycol monomethacrylate (PEG MA) was successfully incorporated in order to modulate protein deposition and cell adhesion. Porous peripheral skirts were fabricated using different types of porosigen. The water content mechanical properties, surface properties and cell response of these various materials have been investigated in this thesis. These studies demonstrated that simple hydrogel SIPNs which show isotropic mechanical behaviour, are not ideal KPro materials since they do not mimic the anisotropic behaviour of natural cornea. The final stage of the work has concentrated on the study of hydrogels reinforced with mesh materials. They offer a promising approach to making a hydrogel that is very flexible but strong under tension, thereby having mechanical properties closer to the natural cornea than has been previously possible.

Page generated in 0.0157 seconds