91 |
Synthesis and characterisation of Ti02 nanoparticles grafted with dopamine-PEG derivativesKotsokechagia, Soultana January 2008 (has links)
The research presented in this thesis has focused on the preparation of crystalline TiO2 nanoparticles and the tailoring of their surface properties in order to allow for their use in the field of biomaterials. Nanocrystalline titanium dioxide is being extensively studied because it offers very interesting properties for possible applications in the field of biomaterials. It is a biocompatible hard material with radio-opaque qualities, used in a variety of prosthetics, implants and diagnostics.
|
92 |
Enzymatic manipulation of DNA/gold nanoparticle assembliesKanaras, Antonios G. January 2003 (has links)
No description available.
|
93 |
Electron transfer at nanostructured interfacesKuzume, Akiyoshi January 2004 (has links)
No description available.
|
94 |
Optical properties of nanoscale silver structures fabricated by nanosphere lithographyMurray, William Andrew January 2005 (has links)
No description available.
|
95 |
The lattice dynamics and thermal properties of nanostructuresHepplestone, S. P. January 2007 (has links)
No description available.
|
96 |
Electronic properties of hybrid carbon nanotubesAthanasopoulos, Stavros January 2005 (has links)
No description available.
|
97 |
Development of mass spectrometric systems to analyse the results of laser ablation experiments on nano- and microparticles : a model for bridging the gap between theory and practicePegus, Albert January 2004 (has links)
No description available.
|
98 |
Electronic and optical properties of nanostructured materialsChao, Yimin January 2003 (has links)
Three types of nanostructured materials have been investigated: C60 on InP (100), Indium clusters on InP (100) and luminescent alkylated-Si quantum dots. The growth model and electronic structureOf C60molecules adsorbed on InP (100) were studied by XPS and UPS as a function of coverage and annealing temperature. The C Is, P 2p, In 4d core levels and the valence band spectra point to the presence of a localized covalent bond between C60 molecules and the substrate. No filling of the lowest unoccupied molecular orbit derived bands was observed. The absence of any change in the surface components of In 4d core level upon C6o adsorption indicated that the chemisorption bond exists between the fullerene molecules and phosphorus atoms rather than between C60 molecules and indium atoms. This assertion is supported by the simultaneous desorption of bothC6o and P upon annealing to 640 K and above. The evolution of clean, In-terminated InP (100)-(2 x 4) surfaces is investigated by SRPES as a function of annealing temperature. As-prepared InP (100)-(2 x 4) surface are found to be free of metallic indium, and the In 4d core level shows two clear surface components. A third, indium-cluster-related component appears after annealing above 360 ± 10 OC, due to phosphorous desorption, and is accompanied by a corresponding reduction in intensity in the In-P surface component. Further annealing leads to a decrease in binding energy of the indium cluster related peak due to increased metallicity and hence core-hole screening in the clusters. The increasingly metallic nature of the indium clusters is also revealed by the appearance and growth of a Fermi edge in valence band spectra. During the course of illumination with 145 eV photons we have monitored the evolution of the Si 2p core level, and observed in real time a splitting and growth of a new Si 2p component assigned to the Si4+ ionic state of Si. This new peak is attributed to in situ oxidation of Si quantum dots caused by photo-induced reaction with water, multilayers of which are present on the surface of the as-introduced quantum dots. X-ray excited optical luminescence (XEOL) reveals that two bands are active upon soft X-ray photon excitation. Surprisingly the 390 nm band (blue light) is the most intense, which is quite different to the result for UV photoexcitation, where the 600-700 nm band is the most prominent one (orange light). The orange light originated from Si-Si bond, blue light from Si-C bond. The ageing phenomenon of photoluminescence is observed but it is reversible.
|
99 |
Issues related to the processing of ferroelectric nanostructures via ex situ and in situ methodsHarada, Scott January 2008 (has links)
This study investigates the impact of several processing parameters on the production of PZT and lead titanate nanostructures, by two different synthesis routes. The first aimed to produce freestanding, nanoscale PZT crystals via a simple, hydrothermal technique. Phase-pure, 52:48 PZT was synthesised within 2 hr at 160 °C in a hydrothermal autoclave. The morphology of the resultant crystals was cubic and micron-sized. Efforts were thus directed at reducing crystal size, by altering several processing conditions. Reaction time and temperature were found to have little effect on crystal size and instead resulted in incomplete reaction below the threshold values shown above. Introducing a 100% excess of Pb precursor led to an improvement in the faceting of the crystals, but again did not lead to a change in average crystal size. However, by using a 2% solution of the surfactant Triton-X, the average crystal size fell from 5 μm to 2 μm. The use of anatase TiO2 in the general hydrothermal procedure imposed a lower limit on the mineraliser concentration that was necessary for dissolution to occur. To overcome this restriction, a hybrid sol-gel/hydrothermal technique was attempted. This had the unexpected result of producing pyramidal microfibres that tapered to nano-sized points. Since the attempts to synthesise freestanding, nanoscale PZT crystals using the hydrothermal method were unsuccessful, work focussed on growing nanoislands on single crystal (100)- SrTiO3 substrates. Heteroepitaxial PZT films up to 1 μm thick, as well as micro- and nanoislands were observed, after extended 24 hr reactions at 160 °C. In some cases, the islands appeared to nucleate along scratches in the SrTiO3 substrate, leading to the formation of microwires up to a millimetre in length. Ferroelectric analysis of the microwires by PFM revealed them to be weakly piezoelectric. The second synthesis route to nanoscale ferroelectrics relied upon the solid phase reaction between Pb and Ti thin films to produce lead titanate. The optimum condition for the crystallisation of the perovskite phase was found to be 1 hr at 650 °C, under an air atmosphere. However, examination of the film morphology revealed large distortions and blistering across the surface. As such, it was not possible to acquire polarisation loop measurements, due to shorting between the top and bottom electrodes. EDAX confirmed that PbO vapour from the film was diffusing into the Si substrate leading to the formation of voids and the production of lead silicate glasses. Alternative adhesion layers for the Pt back electrodes were investigated, in an attempt to limit the diffusion of PbO. Electrical measurements on the films were made possible by substituting Zr for Ti. However, the shape of the hysteresis loops corresponded to a lossy dielectric as opposed to a ferroelectric response from the film. Films annealed on alternative substrates also suffered from blistering, but without the intrusion of PbO. This result suggested that the distortion present in the films was not as a consequence of the interaction between volatile species and the substrate. Instead, blistering and delamination was attributed to stresses generated during the transformation into the PbTiO3 perovskite phase. The solid phase synthesis method was extended to produce PbTiO3 nanoislands by utilising flash thermal evaporations. Deposition times below 1 s resulted in Pb nanoislands with a size range of 5 – 30 nm. Annealing the nanoislands under the same regime as used during the thin film experiments led to the loss of their morphology through melting. To overcome this problem an extended low temperature annealing was adopted. PFM was conducted on various nanoisland and thin film samples produced by the in situ technique. Nanoisland samples subjected to prolonged conventional annealings at 300 °C and brief hot plate annealings at 550 °C exhibited a non-zero piezoresponse. Definitive evidence of ferroelectricity in the nanoisland samples could not be demonstrated, however, as attempts to pole them were unsuccessful. PbTiO3 thin films produced by annealing Pb/Ti bilayers displayed clear c+ and c- ferroelectric domains that were mostly pinned by the grain boundaries. Little evidence of self-polarisation was found, since the average piezoresponse across the image was close to zero. Localised poling resulted in piezoresponse images showing the presence of intermediate contrast. This was interpreted as partial, 90 ° switching or evidence for “tail-to-tail” domain structure formation.
|
100 |
High-speed atomic force microscopy for nanofabricationVicary, James Alexander January 2006 (has links)
No description available.
|
Page generated in 0.026 seconds