• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 17
  • 12
  • Tagged with
  • 1196
  • 148
  • 120
  • 115
  • 104
  • 100
  • 96
  • 94
  • 35
  • 32
  • 32
  • 32
  • 32
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigation into the effect of wind power based embedded generators on distribution networks

Rida, Ibrahim Moh'd Ali January 2000 (has links)
No description available.
62

Space charge measurement in polymer insulated power cables using the PEA method

Fu, Mingli January 2002 (has links)
No description available.
63

Vibration powered generators for self-powered microsystems

Glynne-Jones, Peter January 2001 (has links)
No description available.
64

The state-space modelling of converters and the prediction of harmonics in distribution systems

Abro, M. R. January 1982 (has links)
No description available.
65

Reliability of power system generation

Surana, S. L. January 1973 (has links)
No description available.
66

Comparative studies of low-flammability liquid insulants for transformers

Yoon, K. T. January 1982 (has links)
No description available.
67

The application of the continuous wavelet transform to power system identification and protection

Abusorrah, Abdullah January 2006 (has links)
No description available.
68

Measurement, control and protection of microgrids at low frame rates supporting security of supply

Roscoe, Andrew January 2009 (has links)
Increasing penetrations of distributed generation at low power levels within electricity networks leads to the requirement for cheap, integrated, protection and control systems. To minimise unit cost, algorithms for the measurement of AC voltage and current waveforms should be implemented on a single microcontroller, which also carries out all other protection and control tasks, including communication and data logging. This limits the frame rate of the major algorithms, although ADCs can be over-sampled using peripheral control processors on suitable microcontrollers. Measurement algorithms also have to be tolerant of poor power quality which may arise, even transiently, within a microgrid, battlefield, or disaster-relief scenario. This thesis analyses the potential magnitude of these interfering signals, and presents suitably tolerant architectures and algorithms for measurements of AC waveforms (amplitude, phase and frequency). These algorithms are shown to be robust and accurate, with harmonic content up to the level of 53% THD, and with the major algorithms executing at only 500 samples per second. This is achieved by the careful optimisation and cascaded use of exact-time averaging techniques, which prove to be useful at all stages of the measurements: from DC bias removal to low-sample-rate Fourier analysis to sub-harmonic ripple removal. Algorithms for three-phase nodal power flow analysis are benchmarked on the Infineon TC1796 microcontroller and require less than 8% of the 2000ps frame time, leaving the remainder free for other algorithms.
69

Modelling and analysis of partial discharge activity in underground MV cables

Alsharif, Mohamed January 2010 (has links)
No description available.
70

Architecture and control of large power networks with distributed generation

Garlick, William G. January 2009 (has links)
The architecture of the UK's passive power network has taken over one hundred years to evolve through a process of demand and technology led development. In the early years of electrical power, distribution systems were islands of distributed generation, often of different voltages and frequencies. Increasing demand for electrical power and the need to reduce distribution costs eventually led to the standardisation of frequency and voltages and to the connection of the island systems into a large network. Today's power networks are characterised by their rigid hierarchical structure and unidirectional power flows. The threat of climate change is driving the demand for the use of more renewable energy. For electricity production, this is achieved through generation using more wind, biomass, tidal and solar energy. This type of generation is often referred to as Distributed Generation (DG) because it is not a centralised facility connected to the high voltage transmission grid but a distributed source connected to the lower voltage distribution network. The connection of DG to the distribution network significantly alters the power flow throughout the network, and costly network reinforcement is often necessary. The advancement in the control of electrical power has largely been facilitated by the development of semiconductor power electronic devices and has led to the application of "Flexible Alternating Current Transmission Systems (FACTS), which include such devices as "Static Var Compensators" (SVC) and Static Compensators (STATCOM), for the control of network voltages and power flows. Providing a secure power network is a demanding task, but as network complexity is expected to grow with the connection of high levels of DG, so the problem of integration, not just connection, of each successive generator becomes more protracted. A fundamental change to the network architecture may eventually become necessary, and a new, more active network architecture, perhaps based on power cells containing local generation, energy storage and loads, has been proposed by some researchers. The results of an historic review of the growth of power networks, largely in the UK, forms the basis of a case to replace the conventional power transformer with an Active Transformer that will provide a more controllable, flexible and robust DG connection and (i) will facilitate greater network management and business opportunities, and new power flow control features. The Active Transformer design is based on an a.c. link system and an a.c.-a.c. highfrequency direct resonant converter. This thesis describes a model of the converter, built in MATLAB and Simulink®, and used to explore control of the converters. The converter model was then used to construct a model of the Active Transformer, consisting of a resonant, supply-side converter, a high frequency transformer and a resonant, load-side converter. This was then used to demonstrate control of bi-directional power flow and power factor control at the Grid and Distribution Network connections. Issues of robustness and sensitivity to parameter change are discussed, both for the uncompensated and compensated converters used in the Active Transformer. The application of robust H∞ control scheme proposed and compared to a current PI control scheme to prove its efficacy.

Page generated in 0.0189 seconds