• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 53
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multicarrier DS-CDMA communication systems using smart antennas

Hu, Bin January 2006 (has links)
No description available.
12

Investigation into magnetodielectric materials for antenna applications

Shepherd, Philip January 2006 (has links)
No description available.
13

Analysis and optimisation techniques for multi-band printed base station antennas

Starke, Philip Llewelyn January 2003 (has links)
No description available.
14

High resolution three dimensional imaging of the current distributions on radiating structures

Cook, Gregory Gildroy January 1987 (has links)
No description available.
15

Array manifold surfaces : an investigative study

Sleiman, Adham Burhan January 2003 (has links)
No description available.
16

Diffuse vector channel estimation and robust reception for antenna array DS-CDMA systems

Naveendra, Thiyagarajah Sudharshan January 2005 (has links)
No description available.
17

Design and analysis of slot loaded microstrip patch antennas for ultrawideband (UWB) systems

Matin, Mohammad Abdul January 2007 (has links)
No description available.
18

Photoconductive emitters for pulsed and continuous-wave terahertz generation

Stone, Michael Raymond January 2005 (has links)
No description available.
19

MIMO antenna systems for next generation wireless communications

Michailidis, Evangelos January 2011 (has links)
Multiple Input Multiple Output wireless communications systems require as the name implies multiple antennas at the transmit and receive side of a link, as all multiple elements operationally occupy the same spectrum, the capacity of carrying information is increased with no increase in the transmission bandwidth or power. Antennas destined for MIMO systems need to address the issue of adequate isolation between elements and the issue of the diversity performance of the array, these issues become challenging for mobile terminals. In this thesis dual band arrays for the mobile and the access point are proposed along with dual band mutual coupling reduction and radiation pattern improvement methods. First a dual band two element printed inverted F stacked monopole array is proposed for the mobile terminal. The single elements in the array are easily tuneable and achieve impedance matching from an open stub. The configuration is compact, with radiators distanced at 0.13λ0. By use of a grid of parasitically coupled printed lines mutual coupling is reduced by 9dB, where at the lower band at 2.4GHz, S12 = −18dB. Then a dual band two element printed dipole array is proposed for a pico–micro cell access point. The dipoles are fed by a printed balun which provides wide impedance bandwidth at two bands. To improve the radiation pattern at both frequencies the array is positioned above a dual band frequency selective surface, acting as an artificial magnetic conductor, thus allowing the screen to be placed 0.03λ0 from the array while maintaining good radiation efficiency. Finally a brief discussion of dual band surface wave suppression for printed antennas is presented. Here it is suggested that the surface waves can be eliminated by a superstrate at one band and by an EBG lattice at the second band. Initial experiments with different size superstrates and three periods of mushroom type EBG, show that mutual coupling can be reduced and the radiation pattern can be modified.
20

UWB antennas for wireless communication

Lu, Yang January 2011 (has links)
Ultra-wideband (UWB) technology is a promising solution to provide high data-rate transmission of the future wireless communication systems. The rapid development of UWB wireless communication systems has brought both challenges and: opportunities to novel UWB antenna designs. This thesis is concentrated on the analysis, design and measurement of compact antennas for UWB devices, which can be divided into three areas. / The first area investigated is small planar broadband antennas for wearable and positioning applications where the antennas with unidirectional radiation patterns may be preferred, since the energy will be focused on the desired direction. Furthermore, the interference from the environment behind the antenna can also be greatly minimised. Two low-profile broad band antennas with unidirectional radiation patterns are presented in this work. Their performance in terms of impedance bandwidth and radiation patterns is studied. Results show that they have a very broadband (>50% fractal bandwidth) and constant broadside unidirectional radiation patterns. Hence, they are good candidates and suitable for the in-body and radar applications The second research area is about the planar UWB monopole antennas. The radiation behaviour of the planar UWB monopole antenna is first investigated. It is found that an ultra-wide bandwidth of this type of antenna is achieved by both well-matched travelling wave modes and smooth transients between different higher order modes. However, there exists a common problem for the current planar UWB monopole antennas that their performance is heavily affected by the size of the ground plane. It is found that dimensional changes will influence the characteristic modes excited on the ground plane which directly affects the impedance and radiation of the antenna. A technique of cutting slots on the ground plane is then proposed to resolve the ground plane effect problem. The presence of the slots will introduce slot modes. Optimal slots can produce a strong coupling between the slot mode and the ground plane modes. This coupling makes the characteristic modes of planar UWB monopole insensitive to the size change of the ground plane, hence it effectively minimises the ground plane dependence of the antenna. Two different UWB monopole antennas are investigated using this technique. Both the simulated and measured results demonstrate that this method can indeed minimise the ground plane effects on the impedance matching and have very little effect on the other antenna parameters, such as radiation pattern, gain and I time domain performance. Additionally, a parametric study on the major geometric parameters related to the slots is performed to achieve an optimised design. The third area of my study is the measurement of UWB antenna radiation efficiency. Antenna radiation efficiency is one of the most important parameters when evaluating its performance. In the past, many different antenna efficiency measurement methods were proposed. However, how to measure the UWB antenna efficiency effectively is still a challenging issue. A novel source-stirred chamber/cap (SSC) method is proposed and developed to overcome the limitations of the existing methods. Different types of UWB antennas are employed as examples to demonstrate the usefulness of this new method. Promising results are obtained which prove the SSC method is very effective in measuring the UWB antenna efficiency. It is evident that this method has the potential to become a general antenna efficiency measurement approach.

Page generated in 0.0169 seconds