• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 16
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical modelling of the vocal tract with the 2D digital waveguide mesh

Mullen, Jack January 2006 (has links)
No description available.
2

Speaker modelling for voice conversion

Rentzos, Dimitrios January 2005 (has links)
No description available.
3

An onset-guided spatial analyser for binaural audio

Supper, Ben January 2005 (has links)
No description available.
4

Analysis and modelling of optically interconnected computing systems

Russell, Gordon Alexander January 2004 (has links)
No description available.
5

System-on-chip implementation of real-time finite difference based sound synthesis

Motuk, Halil Erdem January 2006 (has links)
No description available.
6

Novel cepstral techniques applied to speech synthesis

Hassanain, Elham January 2006 (has links)
The aim of this research was to develop an improved analysis and synthesis model for utilization in speech synthesis. Conventionally, linear prediction has been used in speech synthesis but is restricted by the requirement of an all-pole, minimum phase model. Here, cepstral homomorphic deconvolution techniques were used to approach the problem, since there are fewer constraints on the model and some evidence in the literature that shows that cepstral homomorphic deconvolution can give improved performance. Specifically the spectral root cepstrum was developed in an attempt to separate the magnitude and phase spectra. Analysis and synthesis filters were developed on these two data streams independently in an attempt to improve the process. It is shown that independent analysis of the magnitude and phase spectra is preferable to a combined analysis, and so the concept of a phase cepstrum is introduced, and a number of different phase cepstra are defined. Although extremely difficult for many types of signals, phase analysis via a root cepstrum and the Hartley phase cepstrum give encouraging results for a wide range of both minimum and maximum phase signals. Overall, this research has shown that improved synthesis can be achieved with these techniques.
7

Retainer-Free Optopalatographic Device Design and Evaluation as a Feedback Tool in Post-Stroke Speech and Swallowing Therapy

Wagner, Christoph 21 November 2023 (has links)
Stroke is one of the leading causes of long-term motor disability, including oro-facial impairments which affect speech and swallowing. Over the last decades, rehabilitation programs have evolved from utilizing mainly compensatory measures to focusing on recovering lost function. In the continuing effort to improve recovery, the concept of biofeedback has increasingly been leveraged to enhance self-efficacy, motivation and engagement during training. Although both speech and swallowing disturbances resulting from oro-facial impairments are frequent sequelae of stroke, efforts to develop sensing technologies that provide comprehensive and quantitative feedback on articulator kinematics and kinetics, especially those of the tongue, and specifically during post-stroke speech and swallowing therapy have been sparse. To that end, such a sensing device needs to accurately capture intraoral tongue motion and contact with the hard palate, which can then be translated into an appropriate form of feedback, without affecting tongue motion itself and while still being light-weight and portable. This dissertation proposes the use of an intraoral sensing principle known as optopalatography to provide such feedback while also exploring the design of optopalatographic devices itself for use in dysphagia and dysarthria therapy. Additionally, it presents an alternative means of holding the device in place inside the oral cavity with a newly developed palatal adhesive instead of relying on dental retainers, which previously limited device usage to a single person. The evaluation was performed on the task of automatically classifying different functional tongue exercises from one another with application in dysphagia therapy, whereas a phoneme recognition task was conducted with application in dysarthria therapy. Results on the palatal adhesive suggest that it is indeed a valid alternative to dental retainers when device residence time inside the oral cavity is limited to several tens of minutes per session, which is the case for dysphagia and dysarthria therapy. Functional tongue exercises were classified with approximately 61 % accuracy across subjects, whereas for the phoneme recognition task, tense vowels had the highest recognition rate, followed by lax vowels and consonants. In summary, retainer-free optopalatography has the potential to become a viable method for providing real-time feedback on tongue movements inside the oral cavity, but still requires further improvements as outlined in the remarks on future development.:1 Introduction 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Basics of post-stroke speech and swallowing therapy 2.1 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Dysphagia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Treatment rationale and potential of biofeedback . . . . . . . . . . . . . . . . . 13 2.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Tongue motion sensing 3.1 Contact-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Electropalatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Non-contact based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Electromagnetic articulography . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Permanent magnetic articulography . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Optopalatography (related work) . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Electro-optical stomatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Extraoral sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Summary, comparison and conclusion . . . . . . . . . . . . . . . . . . . . . . . 29 4 Fundamentals of optopalatography 4.1 Important radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 Radiant flux and radiant intensity . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Monte Carlo ray tracing methods . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 A priori device design consideration . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.1 Optoelectronic components . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.2 Additional electrical components and requirements . . . . . . . . . . . . 43 4.3.3 Intraoral sensor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Intraoral device anchorage 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Mucoadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Considerations for the palatal adhesive . . . . . . . . . . . . . . . . . . . 48 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 Polymer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 Fabrication method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.3 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.4 PEO tablets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.5 Connection to the intraoral sensor’s encapsulation . . . . . . . . . . . . 50 5.2.6 Formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Initial formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2 Final OPG adhesive formulation . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Initial device design with application in dysphagia therapy 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Optode and optical sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.1 Optode and optical sensor evaluation procedure . . . . . . . . . . . . . . 61 6.2.2 Selected optical sensor characterization . . . . . . . . . . . . . . . . . . 62 6.2.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 62 6.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Device design and hardware implementation . . . . . . . . . . . . . . . . . . . . 64 6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.2 Optode placement and circuit board dimensions . . . . . . . . . . . . . 64 6.3.3 Firmware description and measurement cycle . . . . . . . . . . . . . . . 66 6.3.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.5 Fully assembled OPG device . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4 Evaluation on the gesture recognition task . . . . . . . . . . . . . . . . . . . . . 69 6.4.1 Exercise selection, setup and recording . . . . . . . . . . . . . . . . . . . 69 6.4.2 Data corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.3 Sequence pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.4 Choice of classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.5 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Improved device design with application in dysarthria therapy 7.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1.2 General system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.3 Intraoral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.4 Receiver and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.1.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.2.1 Optode placement and circuit board layout . . . . . . . . . . . . . . . . 87 7.2.2 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 Device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.3.1 Photodiode transient response . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.2 Current source and rise time . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.3 Multiplexer switching speed . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3.4 Measurement cycle and firmware implementation . . . . . . . . . . . . . 93 7.3.5 In vitro measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.6 Optode measurement stability . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Evaluation on the phoneme recognition task . . . . . . . . . . . . . . . . . . . . 98 7.4.1 Corpus selection and recording setup . . . . . . . . . . . . . . . . . . . . 98 7.4.2 Annotation and sensor data post-processing . . . . . . . . . . . . . . . . 98 7.4.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 99 7.4.4 Classifier and feature selection . . . . . . . . . . . . . . . . . . . . . . . 100 7.4.5 Evaluation paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5.1 Tongue distance curve prediction . . . . . . . . . . . . . . . . . . . . . . 105 7.5.2 Tongue contact patterns and contours . . . . . . . . . . . . . . . . . . . 105 7.5.3 Phoneme recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Conclusion and future work 115 9 Appendix 9.1 Analytical light transport models . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.2 Meshed Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.3 Laser safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.4 Current source modulation voltage . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.5 Transimpedance amplifier’s frequency responses . . . . . . . . . . . . . . . . . . 123 9.6 Initial OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . . . 127 9.7 Improved OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . 129 9.8 Test station layout drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Bibliography 152 / Der Schlaganfall ist eine der häufigsten Ursachen für motorische Langzeitbehinderungen, einschließlich solcher im Mund- und Gesichtsbereich, deren Folgen u.a. Sprech- und Schluckprobleme beinhalten, welche sich in den beiden Symptomen Dysarthrie und Dysphagie äußern. In den letzten Jahrzehnten haben sich Rehabilitationsprogramme für die Behandlung von motorisch ausgeprägten Schlaganfallsymptomatiken substantiell weiterentwickelt. So liegt nicht mehr die reine Kompensation von verlorengegangener motorischer Funktionalität im Vordergrund, sondern deren aktive Wiederherstellung. Dabei hat u.a. die Verwendung von sogenanntem Biofeedback vermehrt Einzug in die Therapie erhalten, um Motivation, Engagement und Selbstwahrnehmung von ansonsten unbewussten Bewegungsabläufen seitens der Patienten zu fördern. Obwohl jedoch Sprech- und Schluckstörungen eine der häufigsten Folgen eines Schlaganfalls darstellen, wird diese Tatsache nicht von der aktuellen Entwicklung neuer Geräte und Messmethoden für quantitatives und umfassendes Biofeedback reflektiert, insbesondere nicht für die explizite Erfassung intraoraler Zungenkinematik und -kinetik und für den Anwendungsfall in der Schlaganfalltherapie. Ein möglicher Grund dafür liegt in den sehr strikten Anforderungen an ein solche Messmethode: Sie muss neben Portabilität idealerweise sowohl den Kontakt zwischen der Zunge und dem Gaumen, als auch die dreidimensionale Bewegung der Zunge in der Mundhöhle erfassen, ohne dabei die Artikulation selbst zu beeinflussen. Um diesen Anforderungen gerecht zu werden, wird in dieser Dissertation das Messprinzip der Optopalatographie untersucht, mit dem Schwerpunkt auf der Anwendung in der Dysarthrie- und Dysphagietherapie. Dies beinhaltet auch die Entwicklung eines entsprechenden Gerätes sowie dessen Befestigungsmethode in der Mundhöhle über ein dediziertes Mundschleimhautadhäsiv. Letzteres umgeht das bisherige Problem der notwendigen Anpassung eines solchen intraoralen Gerätes an einen einzelnen Nutzer. Für die Anwendung in der Dysphagietherapie erfolgte die Evaluation anhand einer automatischen Erkennung von Mobilisationsübungen der Zunge, welche routinemäßig in der funktionalen Dysphagietherapie durchgeführt werden. Für die Anwendung in der Dysarthrietherapie wurde eine Lauterkennung durchgeführt. Die Resultate bezüglich der Verwendung des Mundschleimhautadhäsives suggerieren, dass dieses tatsächlich eine valide Alternative zu den bisher verwendeten Techniken zur Befestigung intraoraler Geräte in der Mundhöhle darstellt. Zungenmobilisationsübungen wurden über Probanden hinweg mit einer Rate von 61 % erkannt, wogegen in der Lauterkennung Langvokale die höchste Erkennungsrate erzielten, gefolgt von Kurzvokalen und Konsonanten. Zusammenfassend lässt sich konstatieren, dass das Prinzip der Optopalatographie eine ernstzunehmende Option für die intraorale Erfassung von Zungenbewegungen darstellt, wobei weitere Entwicklungsschritte notwendig sind, welche im Ausblick zusammengefasst sind.:1 Introduction 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Basics of post-stroke speech and swallowing therapy 2.1 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Dysphagia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Treatment rationale and potential of biofeedback . . . . . . . . . . . . . . . . . 13 2.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Tongue motion sensing 3.1 Contact-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Electropalatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Non-contact based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Electromagnetic articulography . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Permanent magnetic articulography . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Optopalatography (related work) . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Electro-optical stomatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Extraoral sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Summary, comparison and conclusion . . . . . . . . . . . . . . . . . . . . . . . 29 4 Fundamentals of optopalatography 4.1 Important radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 Radiant flux and radiant intensity . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Monte Carlo ray tracing methods . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 A priori device design consideration . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.1 Optoelectronic components . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.2 Additional electrical components and requirements . . . . . . . . . . . . 43 4.3.3 Intraoral sensor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Intraoral device anchorage 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Mucoadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Considerations for the palatal adhesive . . . . . . . . . . . . . . . . . . . 48 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 Polymer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 Fabrication method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.3 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.4 PEO tablets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.5 Connection to the intraoral sensor’s encapsulation . . . . . . . . . . . . 50 5.2.6 Formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Initial formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2 Final OPG adhesive formulation . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Initial device design with application in dysphagia therapy 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Optode and optical sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.1 Optode and optical sensor evaluation procedure . . . . . . . . . . . . . . 61 6.2.2 Selected optical sensor characterization . . . . . . . . . . . . . . . . . . 62 6.2.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 62 6.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Device design and hardware implementation . . . . . . . . . . . . . . . . . . . . 64 6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.2 Optode placement and circuit board dimensions . . . . . . . . . . . . . 64 6.3.3 Firmware description and measurement cycle . . . . . . . . . . . . . . . 66 6.3.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.5 Fully assembled OPG device . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4 Evaluation on the gesture recognition task . . . . . . . . . . . . . . . . . . . . . 69 6.4.1 Exercise selection, setup and recording . . . . . . . . . . . . . . . . . . . 69 6.4.2 Data corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.3 Sequence pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.4 Choice of classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.5 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Improved device design with application in dysarthria therapy 7.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1.2 General system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.3 Intraoral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.4 Receiver and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.1.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.2.1 Optode placement and circuit board layout . . . . . . . . . . . . . . . . 87 7.2.2 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 Device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.3.1 Photodiode transient response . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.2 Current source and rise time . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.3 Multiplexer switching speed . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3.4 Measurement cycle and firmware implementation . . . . . . . . . . . . . 93 7.3.5 In vitro measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.6 Optode measurement stability . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Evaluation on the phoneme recognition task . . . . . . . . . . . . . . . . . . . . 98 7.4.1 Corpus selection and recording setup . . . . . . . . . . . . . . . . . . . . 98 7.4.2 Annotation and sensor data post-processing . . . . . . . . . . . . . . . . 98 7.4.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 99 7.4.4 Classifier and feature selection . . . . . . . . . . . . . . . . . . . . . . . 100 7.4.5 Evaluation paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5.1 Tongue distance curve prediction . . . . . . . . . . . . . . . . . . . . . . 105 7.5.2 Tongue contact patterns and contours . . . . . . . . . . . . . . . . . . . 105 7.5.3 Phoneme recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Conclusion and future work 115 9 Appendix 9.1 Analytical light transport models . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.2 Meshed Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.3 Laser safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.4 Current source modulation voltage . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.5 Transimpedance amplifier’s frequency responses . . . . . . . . . . . . . . . . . . 123 9.6 Initial OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . . . 127 9.7 Improved OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . 129 9.8 Test station layout drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Bibliography 152
8

Ανάπτυξη διάταξης βιομηχανικής όρασης για προσδιορισμό θέσης και προσανατολισμού κινούμενων αντικειμένων και οδήγηση ρομποτικού βραχίονα

Κανελλάκης, Χριστόφορος, Κυρίτσης, Γεώργιος 16 April 2015 (has links)
Ο πρωταρχικός στόχος αυτής της εργασίας είναι η υλοποίηση μιας βιομηχανικής διάταξης σε εργαστηριακή κλίμακα στην οποία να συνεργάζονται ένα στερεοσκοπικό σύστημα και ένας ρομποτικός βραχίονας. Πιο συγκεκριμένα, η διαδικασία χωρίζεται σε δύο μέρη, την αναγνώριση στο χώρο των επιθυμητών αντικειμένων και την οδήγηση βάση αυτής του ρομποτικού βραχίονα. Για το πρώτο μέρος έγινε χρήση της βιβλιοθήκης OpenCV σε γλώσσα C++ και ως στερεοσκοπικό υλικό χρησιμοποιήθηκαν δύο παράλληλα διατεταγμένες κάμερες τύπου webcam. Η διαδικασία που ακολουθήθηκε για την αναγνώριση θέσης χωρίστηκε σε αρκετά βήματα. Αρχικά δημιουργήθηκε ένα πρόγραμμα το οποίο αποθηκεύει καρέ από τις δύο κάμερες στα οποία απεικονίζεται ένα μοτίβο βαθμονόμησης. Στη συνέχεια, αυτές οι εικόνες εισάγονται στον κώδικα βαθμονόμησης με στόχο να υπολογιστούν οι εγγενείς και εξωγενείς παράμετροι των καμερών. Έπειτα, με τη χρήση των παραμέτρων αυτών και τη θεωρία της επιπολικής γεωμετρίας μπορεί να γίνει η αναγνώριση θέσης ενός αντικειμένου στο χώρο. Τέλος, χρησιμοποιείται ένας αλγόριθμος εντοπισμού του κέντρου ενός αντικειμένου στην οθόνη με βάση το χρώμα έτσι ώστε να καθοριστεί για ποιο αντικείμενο ο αλγόριθμος θα υπολογίσει τη θέση. Στο δεύτερο μέρος χρησιμοποιήθηκε ο ρομποτικός βραχίονας Katana s400 6M90G της εταιρείας Neuronics, ο οποίος προγραμματίστηκε σε γλώσσα C++, σε περιβάλλον Visual Studio 2008. Αρχικά, βρέθηκαν οι γωνίες Euler της αρπάγης, για διαφορετικές προσεγγίσεις του προσανατολισμού της. Με τον συνδυασμό των συντεταγμένων του αντικειμένου, που βρίσκονται από το στερεοσκοπικό σύστημα καθοδηγείται το Katana ώστε να το πιάσει. Τα πειράματα που διεξαχθήκαν περιλάμβαναν την αρπαγή στάσιμων αντικειμένων με γενικό και οριζόντιο προσανατολισμό εργαλείου. Τέλος, πραγματοποιήθηκαν πειράματα με αντικείμενα εν κινήσει, τυχαίας θέσης με γενικό, κάθετο και οριζόντιο προσανατολισμό αρπάγης. / The primary objective of this thesis is the implementation of an industrial system at laboratory scale in which a stereo system collaborates with a robotic arm. More specifically, the process is divided into two parts, the recognition of the desired objects and the manipulation of the robotic arm. In the first part were used the OpenCV library, in C ++ language and two parallel web-cameras. The procedure for the recognition of the objects, was divided into several steps. Initially a number of images were inserted in the calibration algorithm in order to estimate the intrinsic and extrinsic camera parameters. Then, using these parameters and the epipolar geometry it was possible to recognize the position of an object in 3D space. Finally, an algorithm is used to locate the center of an object on the screen by color in order to determine for what object the algorithm will calculate the position. In the second part was used the robotic arm Katana s400 6M90G by Neuronics, programmed in C ++, in Visual Studio 2008. Initially, the Euler angles of the gripper for different orientations were found. Given the coordinates of the objects, provided by the stereo system, the Katana arm was guided to grasp them. The experiments that were conducted included the grasping of stationary objects in a general and horizontal orientation of the Katana tool. Finally, experiments were performed with objects in motion and random position in general, vertical and horizontal orientation of the gripper.
9

Synthesis of biological vision models using analog VLSI / Alireza Moini.

Moini, Alireza January 1997 (has links)
Bibliography: leaves 195-210. / xviii, 210 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / A systematic view of all design levels, from the pixie level to the architectural level of vision chips. Important issues in the design of analog VLSI (AVLSI) vision chips, including mismatch and digital noise are addressed. / Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 1998
10

Ρωμαλέες-χαμηλής πολυπλοκότητας τεχνικές εκτίμησης στάσης κάμερας

Σέχου, Αουρέλα 31 August 2012 (has links)
Το πρόβλημα της εκτίμησης θέσης και του προσανατολισμού της κάμερας από τις γνωστές 3D συντεταγμένες n σημείων της σκηνής και των 2D προβολών τους στο επίπεδο της εικόνας, είναι γνωστό στην βιβλιογραφία ως "Perspective n Point(PnP)" πρόβλημα. Το πρόβλημα αυτό συναντάται σε πολλά σημαντικά επιστημονικά πεδία όπως αυτά της υπολογιστικής όρασης, της ρομποτικής, της αυτοματοποιημένης χαρτογραφίας, της επαυξημένης πραγματικότητας κ.α, και μπορεί να θεωρηθεί ως μια ειδική περίπτωση του προβλήματος βαθμονόμησης της κάμερας. Η ανάγκη για την ανάπτυξη ρωμαλέων και χαμηλής πολυπλοκότητας μεθόδων για την επίλυση του "PnP" προβλήματος σε πραγματικό χρόνο έχει αναδειχθεί από πολλούς ερευνητές τα τελευταία χρόνια. Στο πλαίσιο της προτεινόμενης διπλωματικής μελετήθηκαν σε βάθος οι πιο σημαντικές μέθοδοι που έχουν προταθεί στην διεθνή βιβλιογραφία μέχρι σήμερα. / The perspective camera pose estimation problem, given known 3D coordinates in the world coordinate system and their correspondent 2D image projections, is known as "Perspective n Point(PnP)" problem. It has many applications in Photogrammetry, Computer Vision, Robotics, Augmented Reality and can be considered as a special case of camera calibration problem. The need for development of robust and simultaneously low computational complexity real time solutions for the PnP problem is very strong as it has attracted much attention in the literature during the last few years. In this master thesis, most significant as well as state of the art techniques which provide solutions to camera pose estimation problem have been thoroughly studied.

Page generated in 0.0302 seconds