151 |
Simulation of aircraft gas turbine engineIsmail, Ibrahim H. January 1991 (has links)
No description available.
|
152 |
Effective optimal control of a fighter aircraft engineMahmoud, Saad M. January 1988 (has links)
Typical modem fighter aircraft use two-spool, low by-pass ratio, turbojet engines to provide the thrust needed to carry out the combat manoeuvres required by present-day air warfare tactics. The dynamic characteristics of such aircraft engines are complex and non-linear. The need for fast, accurate control of the engine throughout the flight envelope is of paramount importance and this research was concerned with the study of such problems and subsequent design of an optimal linear control which would improve the engine's dynamic response and provide the required correspondence between the output from the engine and the values commanded by a pilot. A detailed mathematical model was derived which, in accuracy and complexity of representation, was a large improvement upon existing analytical models, which assume linear operation over a very small region of the state space, and which was simpler than the large non-analytic representations, which are based on matching operational data. The non-linear model used in this work was based upon information obtained from DYNGEN, a computer program which is used to calculate the steady-state and transient responses of turbojet and turbofan engines. It is a model of fifth order which, it is shown, correctly models the qualitative behaviour of a representative jet engine. A number of operating points were selected to define the boundaries used for the flight envelope. For each point a performance investigation was carried out and a related linear model was established. By posing the problem of engine control as a linear quadratic problem, in which the constraint was the state equation of the linear model, control laws appropriate for each operating point were obtained. A single control was effective with the linear model at every point. The same control laws were then applied to the non-linear mathematical model adjusted for each operating point, and the resulting responses were carefully studied to determine if one single control law could be used with all operating points. Such a law was established. This led, naturally, to the determination of an optimal linear tracking control law, and a further investigation to determine whether there existed an optimal non-linear control law for the non-linear model. In the work presented in this dissertation these points are fully discussed and the reasons for choosing to find an optimal linear control law for the non-linear model by solving the related two-point, boundary value problem using the method of quasilinearisation are presented. A comparison of the effectiveness of the respective optimal control laws, based upon digital simulation, is made before suggestions and recommendations for further work are presented.
|
153 |
Fluidic devices as fuel injectors for natural gas enginesChen, Rui January 1997 (has links)
A novel, fast switching, reliable, and economical fluidic gaseous fuel injector system designed for natural gas engines has been developed in this research. The system consists mainly of no-moving-part fluidic devices and piezo-electric controlling interfaces. The geometric parameters of a fluidic device seriously affect its performance. Traditionally, these parameters can only be optimised through "trial and error" exercise. In this research, a computer simulation model for the jet steady state attachment and dynamic switching has been developed. The good agreements between predicted results and experimental ones show that the model can not only explain the jet attaching and switching mechanism, but also optimise the design of geometric parameters of a fluidic device. The steady state and dynamic characteristics of the system were tested on a laboratory experimental rig. The results show that the system can handle the large gas volume flow rate required by natural gas engines and is capable of operating via pulse width modulation. A few typical commercial solenoid type gas injectors were also tested and the results were compared with those from the fluidic system. It was found that the fluidic gaseous fuel injector system has faster switching responses and smaller injection cycle-to-cycle variations.
|
154 |
Gas turbine combustor port flowsSpencer, A. January 1998 (has links)
Competitive pressure and stringent emissions legislation have placed an urgent demand on research to improve our understanding of the gas turbine combustor flow field. Flow through the air admission ports of a combustor plays an essential role in determining the internal flow patterns on which many features of combustor performance depend. This thesis explains how a combination of experimental and computational research has helped improve our understanding, and ability to predict, the flow characteristics of jets entering a combustor. The experiments focused on a simplified generic geometry of a combustor port system. Two concentric tubes, with ports introduced into the inner tube's wall, allowed a set of radially impinging jets to be formed within the inner tube. By investigating the flow with LDA instrumentation and flow visualisation methods a quantitative and qualitative picture of the mean and turbulent flow fields has been constructed. Data were collected from the annulus, port and core regions. These data provide suitable validation information for computational models, allow improved understanding of the detailed flow physics and provide the global performance parameters used traditionally by combustor designers. Computational work focused on improving the port representation within CFD models. This work looked at the effect of increasing the grid refinement, and improving the geometrical representation of the port. The desire to model realistic port features led to the development of a stand-alone port modelling module. Comparing calculations of plain-circular ports to those for more realistic chuted port geometry, for example, showed that isothermal modelling methods were able to predict the expected changes to the global parameters measured. Moreover, these effects are seen to have significant consequences on the predicted combustor core flow field.
|
155 |
Development of a testing facility for verification of radial turbine design procedures and off-design performance predictionsMahon, Patrick Gerard January 1991 (has links)
No description available.
|
156 |
The design, development and testing of a turbine hydraulic dynamometerMcDonnell, Gavin Thomas January 1999 (has links)
No description available.
|
157 |
Mixing in non-reacting gas turbine combustor flowsDa Palma, Jose Manuel Laginha Mestre January 1989 (has links)
No description available.
|
158 |
Earth imaging with microsatellites : an investigation, design, implementation and in-orbit demonstration of electronic imaging systems for Earth observation on-board low-cost microsatellitesFouquet, Marc January 1995 (has links)
This research programme has studied the possibilities and difficulties of using 50 kg microsatellites to perform remote imaging of the Earth. The design constraints of these missions are quite different to those encountered in larger, conventional spacecraft. While the main attractions of microsatellites are low cost and fast response times, they present the following key limitations: Payload mass under 5 kg, Continuous payload power under 5 Watts, peak power up to 15 Watts, Narrow communications bandwidths (9.6 / 38.4 kbps), Attitude control to within 5°, No moving mechanics. The most significant factor is the limited attitude stability. Without sub-degree attitude control, conventional scanning imaging systems cannot preserve scene geometry, and are therefore poorly suited to current microsatellite capabilities. The foremost conclusion of this thesis is that electronic cameras, which capture entire scenes in a single operation, must be used to overcome the effects of the satellite's motion. The potential applications of electronic cameras, including microsatellite remote sensing, have erupted with the recent availability of high sensitivity field-array CCD (charge-coupled device) image sensors. The research programme has established suitable techniques and architectures necessary for CCD sensors, cameras and entire imaging systems to fulfil scientific/commercial remote sensing despite the difficult conditions on microsatellites. The author has refined these theories by designing, building and exploiting in-orbit five generations of electronic cameras. The major objective of meteorological scale imaging was conclusively demonstrated by the Earth imaging camera flown on the UoSAT-5 spacecraft in 1991. Improved cameras have since been carried by the KITSAT-1 (1992) and PoSAT-1 (1993) microsatellites. PoSAT-1 also flies a medium resolution camera (200 metres) which (despite complete success) has highlighted certain limitations of microsatellites for high resolution remote sensing. A reworked, and extensively modularised, design has been developed for the four camera systems deployed on the FASat-Alfa mission (1995). Based on the success of these missions, this thesis presents many recommendations for the design of microsatellite imaging systems. The novelty of this research programme has been the principle of designing practical camera systems to fit on an existing, highly restrictive, satellite platform, rather than conceiving a fictitious small satellite to support a high performance scanning imager. This pragmatic approach has resulted in the first incontestable demonstrations of the feasibility of remote sensing of the Earth from inexpensive microsatellites.
|
159 |
The use of optimal estimation techniques in the analysis of gas turbinesProvost, M. J. January 1994 (has links)
This thesis discusses several methods that can be used to analyse gas turbines, based on an optimal estimation algorithm called the Kalman Filter. These techniques overcome the difficulties of more 'traditional' analysis methods, which can give misleading results because they do not explicitly consider the possibility of measurement error. An enhancement to the Kalman Filter (the 'Concentrator') is presented, which overcomes the Kalman Filter's tendency to 'smear' the effects of genuine changes in a small number of component changes and/or sensor biasses over the whole set of changes and biasses being considered. To complement this, methods of optimising some of the statistical inputs to the Kalman Filter in order to improve the ability of the 'Concentrator' to carry out the required analysis are discussed. These are based on analytical methods developed to determine the sensitivity of the Kalman Filter to its inputs. Techniques are also presented for determining the gas-path measurements in a gas turbine that are needed to enable the required analysis of component changes and/or sensor biasses to be performed, including determination of both possible measurement redundancy and the ability of a set of measurements to successfully differentiate between all the component changes and sensor biasses being sought. A recursive algorithm for time series analysis (the Smoothing/Trending Algorithm) is also presented. This produces, for each point in a time series, best estimates of the underlying levels and trends (rates of change of level) of the process generating the observations. A method of combining the 'Concentrator' and the Smoothing/Trending Algorithm is also presented, which reduces the effects of sensor noise on the analysis of component changes and sensor biasses from time series data. Many types of prime movers and process plant could be effectively analysed using the methods described in this thesis.
|
160 |
Low speed axial compressor design and evaluation : high speed representation and endwall flow control studiesLyes, Peter A. January 1999 (has links)
This Thesis reports the design, build and test of two sets of blading for the Cranfield University low speed research compressor. The first of these was a datum low speed design based on the fourth stage of the DERA high speed research compressor C 147. The emphasis of this datum design was on the high-to-low speed transformation process and the evaluation of such a process through comparing detailed flow measurements from both compressors. Area traverse measurements in both the stationary and rotating frame of reference were taken at Cranfield along with overall performance, blade surface static pressure and flow visualisation measurements. These compare favourably with traverse and performance measurements taken on C147 before commencement of the PhD work. They show that despite the compromises made during the transformation process, due to both geometric and aerodynamic considerations, both the primary and secondary flow features can be successfully reproduced in the low speed environment. The aim of the second design was to improve on the performance of the datum blading through the use of advanced '3D' design concepts such as lean and sweep. The blading used nominally the same blade sections as the datum, and parametric studies were conducted into various lean/sweep configurations to try to optimise the blade performance. The final blade geometry also incorporated leading edge recambering towards the fixed endwalls of both the rotor and stator. The '3D' blading demonstrated a 1.5% increase in efficiency (over the datum blading) at design flow rising to around 3% at near stall along with an improvement in stall margin and pressure rise characteristic. The design work was completed using the TRANSCode flow solver for both the blade-to-blade solutions (used in the SI-S2 datum design calculation) and the fully 3D solutions (for the advanced design and post datum design appraisal). The 3D solutions gave a reasonable representation of the mid-span and main 3D flow features but failed to model the corner and tip clearance flow accurately. An interesting feature of the low speed flowfield was the circumferential variation in total pressure observed at exit from all rotors for both designs. This was not present at high speed and represents one of the main differences between the high and low speed flow. Unsteady modelling of mid- height sections from the first stage indicate that part of this variation is due to the potential interaction of the rotor with the downstream stator while the remainder is due to the wake structure from the upstream stator convecting through the rotor passage. Finally, the implications for a high speed design based on the success of the 3D low speed design are considered.
|
Page generated in 0.0115 seconds