1 |
The mineralogical and biogeochemical transformations associated with As-bearing sulphide minerals in acid mine drainage systemCorkhill, Claire L. January 2008 (has links)
Arsenopyrite (FeAsS) and enargite (CU3ASS4) are the most common As-bearing sulphide minerals in acid mine drainage environments. Orpiment (AS2S3) and realgar (AsS) are also found. In the environment, these minerals are unstable under oxidising conditions, and significant concentrations of As can be released into groundwater upon weathering. Acidophilic bacteria such as Leptospirillum ferrooxidans have been shown to enhance the dissolution of sulphide minerals in these environments, and could therefore accelerate the release of arsenic.
|
2 |
Treatment of acid mine drainage using constructed wetland and UV/TiO₂ photocatalysisSeadira, Tumelo Wordsworth Poloko 05 1900 (has links)
M. Tech. (Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology / Acid mine drainage (AMD) is a serious problem associated with mining activities, and it has the potential to contaminate surface and ground water. The aim of this study was to evaluate the performance of constructed wetland and photocatalysis in treating AMD. Three identical unvegetated upflow constructed wetlands packed with natural zeolite (clinoptilolite) and coarse silica sand were made of a cylindrical plastic pipe, and the slurry photocatalyst was prepared using quartz material. A hydro-alcohol thermal method was used to prepare an anatase core-void-shell TiO2 photocatalyst.
The results showed that the three unvegetated upflow constructed wetlands (CW) had relatively similar percentage removal of heavy metals despite their varying concentrations within the AMD. The removals were: Fe (86.54 - 90.4%); Cr (56.2 - 64.5%); Mg (56.2 - 67.88%); Ca (77.1 - 100%); and 100% removal was achieved for Be, Zn, Co, Ni, and Mn. The removal of sulphate was also 30%. Heavy metals concentration in CW packing material was significantly higher in the outlet of the constructed wetlands than in the inlet. The adsorption isotherms revealed that the experimental data fitted the Langmuir Isotherms better, which suggested a monolayer coverage of heavy metals on the surface of the adsorbents; thermodynamic studies showed that the nature of adsorption taking place was physical; the kinetics models showed that the adsorption was first order reaction. A higher photocatalytic reduction (62%) of Cr(VI) was obtained at pH 2, 30 mg/l Cr(VI) initial concentration, and three hours of irradiation time. It was also found that the presence of Fe(III) enhanced the reduction of Cr(VI). The core-void-shell TiO2 photocatalyst showed a better activity than the commercial P25 Degussa for the reduction of Cr(VI) to Cr(III). The kinetic studies showed that the reduction of Cr(VI) was first order reaction. Photocatalytic reduction of Cr(VI) in real AMD sample was achieved only for the Douglas North Discharge (DND) sample (68%), and the Fe(III) reduction was found to be 83%. Therefore it was concluded that the combination of constructed wetland and UV/ TiO2 photocatalysis employing anatase core-void-shell TiO2 as a photocatalyst has a potential to reduce the toxicity of Cr(VI)-laden acid mine drainage.
|
3 |
Photocatalytic treatment of industrial wastewater containing citric acid and toxic heavy metalsBaloyi, Siwela Jeffrey 12 1900 (has links)
M. Tech. (Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology| / The co-existence of organic acids and toxic heavy metals in natural water creates harmful effects on human, plants and animals. Therefore, it is necessary to treat organic acids and toxic heavy metal contaminated wastewater prior to its discharge to the environment. The aim of this study was to apply co-treatment of industrial wastewater containing citric acid and toxic heavy metals in single and binary systems using photocatalysis process. The hydrothermal method was used to synthesise dandelion-like TiO2 structures. Modifications of the dandelion-like TiO2 by deposition of gold nanoparticles and immobilisation on calcium alginate were done using deposition precipitation and one-step encapsulation methods, respectively. Dandelion-like TiO2 and dandelion-like TiO2 immobilised on calcium alginate (Alg/TiO2) were used as photocatalysts for Cr(VI), Hg(II) and citric acid removal from water.
The results showed that the production of dandelion-like TiO2 structures strongly depends on the reaction time and synthesis temperature as key process parameters. The characterisation of the dandelion-like TiO2 by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) revealed the crystal structure, morphology, chemical composition and surface area. It was found that the efficiency of photocatalytic process depends on the type of pollutants, initial pH of the solution, photocatalyst dosage, contact time, substrate initial concentration, UV wavelength and light intensity. The reduction efficiency of Cr(VI) ion and citric acid increased with decreasing the initial pH values and initial concentration. On the other hand, Hg(II) reduction efficiency increased with increasing the initial pH values and initial concentration. In a binary system, the reduction of Cr(VI) and Hg(II) was found to be faster than in the single and ternary systems. The relationship of the chemical reaction rate of Cr(VI), Hg(II) and citric acid were expressed by the pseudo-first-order kinetic equation. Addition of ferric ions to Cr(VI)-citric acid complex and Hg(II)-citric acid complex enhanced the reduction of Cr(VI) and Hg(II), a complete reduction was accomplished within 30 and 60 minutes (min) of irradiation time, respectively. The reduction efficiency of both Cr(VI) and Hg(II) in the presence of citric acid in a solution was still significant after four times of Alg/TiO2 reuse. These results indicated that the UV/TiO2 photocatalysis process can be considered as a suitable method to reach a complete reduction of Cr(VI) and Hg(II) in the presence of citric acid in a solution.
|
4 |
Évaluation environnementale et géométallurgique de minerais sulfurés polymétalliques, basée sur une approche minéralogique pluridisciplinaire / Environmental assessment of polymetallic sulfide ores based on a multidisciplinary approachChopard, Aurélie 20 December 2016 (has links)
Ce travail de thèse a pour objectif de développer une méthodologie permettant de prédire l’impact environnemental des futurs projets miniers, dès l’étape d’exploration. Le drainage minier acide, connu comme le principal problème environnemental des gisements sulfurés, se produit lors de l’oxydation des sulfures par l’oxygène et l’eau. Des échantillons de sulfures et sulfosels ont été soumis à des tests géochimiques afin d’étudier leur taux de réactivité. Les minéraux ont été classés par ordre décroissant: gersdorffite > pyrrhotite > arsénopyrite > Ni-pyrite > Ni-pyrrhotite > Fe-sphalérite > pyrite > galène > chalcopyrite. L’influence des interactions galvaniques sur le taux de réactivité de la pyrite, la chalcopyrite et la sphalérite a été étudiée. La pyrite est protégée galvaniquement en présence de chalcopyrite mais n’est pas complètement protégée en présence de sphalérite. Des mélanges synthétiques de minéraux purs ont permis la modification du calcul de potentiel de génération d’acidité par l’ajout d’un facteur cinétique, basée sur les équations de Paktunc (1999) et Bouzahzah et al. (2013). Dix minerais polymétalliques et aurifères ont été caractérisés selon une méthodologie pluridisciplinaire. La caractérisation minéralogique des minerais a permis de connaître leur composition minéralogique quantitative et de détecter les éléments contaminants ainsi que leur spéciation. Une méthode automatisée de quantification minéralogique basée sur la microscopie optique multispectrale a été développée. Cette innovation vise à développer la microscopie optique pour des applications métallurgiques et environnementales de routine / This thesis proposes the implementation of a reliable methodology, based on the characterization of ores at the exploration stage. The main environmental issues for the mining industry are acid mine drainage and contaminated neutral drainage. Sulfides and sulfosalts, when in contact with water and oxygen, oxidize at different rates, resulting in the production of acid and release of various contaminants. Samples of pure sulfides were submitted to geochemical testing to determine their oxidation rates. The pure minerals can be ordered from the highest to the lowest reactivity as: gersdorffite > pyrrhotite > arsenopyrite > Ni-pyrite > Ni-pyrrhotite > Fe-sphalerite > pyrite > galena > chalcopyrite. Galvanic interactions between pyrite, chalcopyrite, and sphalerite were geochemically investigated. Pyrite was galvanically protected in presence of chalcopyrite, and partially protected in presence of sphalerite. Five synthetic tailings, simulating realistic tailings sulfides compositions, were prepared to compare geochemical behaviors and produce a better assessment of the acid-generation potential (AP). A new method is proposed by adding a kinetic factor. Ten polymetallic and gold sulfide ores were fully characterized with multidisciplinary techniques. Mineralogical investigations allowed for the mineralogical quantification of the ores, and for the knowledge of trace elements and their speciation. A method was developed to automatically quantify sulfides by multispectral optical microscopy. Detailed mineralogical work can save time and money and allows detecting the problems at the beginning of mining developments, improving mine waste management and mine closure planning
|
5 |
Synthesis of cross-linked pine cone biosorbent and its applications in industrial wastewater treatmentKupeta, Albert Jerry Kafushe 11 1900 (has links)
M. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences) -- Vaal University of Technology / The widespread use of phenols and phenolic derivatives in industrial applications has resulted in their discharge as part of industrial wastewater. These chemicals are toxic and need to be removed from the aqueous environment. Amongst the available pollutant removal technologies, adsorption has been widely used due to its simplicity, ease of operation, cost-effectiveness and ability to sequester pollutants at very low concentrations. Different adsorbents have been applied for removal of phenols and their derivatives. Use of agricultural waste as adsorbents seems to offer a much cheaper alternative in pollutant removal. This study examines the synthesis of a hydrophobic biomaterial composite by cross-linking of Fenton treated pine cone and applying the prepared adsorbent for 2-nitrophenol removal from aqueous solution.
Pine cone biomass, in its raw and modified forms was tested for its ability to remove 2-nitrophenol from simulated industrial wastewater. The experimental procedure is divided into two main parts: (1) pine cone modification using Fenton’s reagent and 1.6-hexamethylene diisocyanate and (2) application of the prepared hydrophobic adsorbent for 2-nitrophenol removal from wastewater. Fenton’s reagent was used to remove pigments, extractives and other soluble organic compounds from the raw pine. FTIR spectroscopy showed an increase in magnitude of oxygenated surface groups which resulted in a decrease in pHpzc. The effect of Fenton treatment on further modification of the pine biomass via cross-linking using 1.6-hexamethylene diisocyanate was investigated. Optimum reaction variables for the cross-linking using dibutyltin dilaurate as catalyst under an inert nitrogen gas atmosphere in anhydrous hexane solvent were determined using FTIR spectroscopy. Success of the cross-linking procedure was confirmed by use of analytical techniques (XRD, TGA, SEM, EDX and BET surface area) and weight percent gain calculations.
Pine and modified pine biomass were tested for their ability to sequester 2-nitrophenol via batch adsorption technique. The effect of pine modification on affinity for the biosorbate was investigated. The mechanism of the adsorption process was determined via use of kinetic, diffusion and equilibrium isotherm models. Two error functions (coefficient of determination and percent variable error) were employed to substantiate the model showing a good fit to the experimental adsorption data.
The experimental adsorption kinetic data was fit to the pseudo-first-order and pseudo-second-order kinetic models. Due to the large size of the pollutant molecules diffusion process analysis was also conducted. The effect of pine modification on kinetic and diffusion parameters was determined.
The experimental equilibrium adsorption data was fit to the Freundlich, Redlich-Peterson and Hill isotherm models. The initial shapes of the adsorption isotherms for 2-nitrophenol adsorption onto pine and modified pine biomass determined the type of equilibrium isotherm models to fit the experimental data to. Thermodynamic parameters were calculated to determine the spontaneity, feasibility and energy changes associated with the adsorption process. The degree of disorder at the solid/liquid interface after the adsorption was determined. The effect of temperature on the adsorption process was used to show whether the adsorption is physical or chemical. The effect of pine modification on equilibrium isotherm parameters was determined.
The study is divided into seven chapters:
Chapter 1:
The chapter covers the introduction, problem statement, aim and objectives of the research. It gives an insight into the research project.
Chapter 2:
The literature review of pollutants in industrial wastewater and methods of their removal is dealt with in this chapter. Adsorption is introduced as an alternative technique for pollutant removal from aqueous systems. An in-depth review of various adsorbents (including pine cone), their merits and limitations are also discussed together with methods of modifying and use of modified adsorbents. Equilibrium, kinetic and thermodynamic models used to treat adsorption experimental data are presented.
Chapter 3:
The experimental procedures on the synthesis, characterization and application of the hydrophobic biosorbent in the removal of 2-nitrophenol from aqueous solution are presented. Kinetic and equilibrium experiments are described in detail.
Chapter 4:
It describes the first part of the results and discussions. The chapter focuses on optimization of reaction variables and characterization (using various analytical techniques) of the hydrophobic biomaterial composite.
Chapter 5
The chapter discusses the second part of the results. It focuses on magnitude of surface charge, pHpzc and kinetic studies. Fitting of the adsorption experimental data to kinetic and diffusion models is presented together with the error functions.
Chapter 6
The chapter discusses part three of the results on equilibrium studies. The adsorption experimental data is fitted to equilibrium isotherm equations and error determination is presented. Thermodynamic parameters are calculated and interpreted.
Chapter 7:
Conclusion and recommendations are presented.
The optimum reaction variables for cross-linking of Raw and Fenton treated pine cone were determined using FTIR analysis and found to be: 0.2 g pine biomass, 3.5 cm3 1.6-hexamethylene diisocyanate cross-linker, 50 cm3 anhydrous hexane solvent, 1.5 cm3 dibutyltin dilaurate catalyst, temperature of 50 °C and a reaction time of 4 hours. The pine surface showed an increase in phenolic, lactonic and carboxylic acid groups due to the modification. The pHpzc showed a decrease due to modification of the pine cone biomass. The pHpzc values for the pine and modified pine cone biomass were found to be: Raw = 7.49, Raw-HMDI modified = 6.68, Fenton treated pine = 5.40 and Fenton-HMDI modified = 6.12. The optimum pH for the adsorption of 2-nitrophenol onto raw pine and modified pine cone biomass was determined to be 6. The optimum adsorbent dosage was determined as 1.5 g/dm3. The adsorption kinetics show a good fit with the pseudo-second-order model. This suggests that surface adsorption is the controlling step in the adsorption of 2-nitrophenol onto pine cone biomass. The analysis of diffusion processes showed that the initial rapid stage during the adsorption is due to external mass transfer processes. The adsorption experimental data also showed that pore diffusion was rate-limiting amongst the diffusion processes. Pine modification using Fenton’s reagent and 1.6-hexamethylene diisocyanate increased magnitude of kinetic and diffusion parameters. Experimental data for 2-nitrophenol adsorption onto pine and modified pine cone biomass showed better correlation with the Redlich-Peterson and Hill isotherm models and poor correlation with the Freundlich isotherm model. This suggests that the mechanism does not show complete multilayer coverage with cooperative phenomena between adsorbate molecules. Thermodynamic parameters showed that the adsorption is feasible, spontaneous, and exothermic and results in a decrease in degree of disorder at the solid/liquid interface. An increase in temperature resulted in a decrease in adsorption capacity showing that the adsorption is physical. Pine modification using Fenton’s reagent and 1.6-hexamethylene diisocyanate increased magnitude of kinetic, diffusion and isotherm parameters. The kinetic and equilibrium results show that the adsorption of 2-nitrophenol onto pine cone biomass follows the order: Fenton treated-HMDI > Fenton treated > Raw-HMDI > Raw. Hence, it can be concluded that Fenton treatment and HMDI cross-linking modification did increase the adsorptive capabilities of the pine cone biomass. / VUT Research Directorate
|
Page generated in 0.0417 seconds