• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multi-objective optimisation framework for missile aerodynamic design

Lisk, D. M. January 2014 (has links)
Engineering systems are designed to perform particular functions to a given specification. Optimisation is the process of finding the design which best achieves these goals or objectives. Until now, the aerodynamic design of missile systems has been performed using single-objective optimisation and semi-empirical models. An optimisation framework has been developed and tailored for the multi-objective optimisation of projectiles. The framework is demonstrated on three different configurations of projectile: body-tails, body-canards-tails and body-canards-tails with a rotating nose, with up to 7 input parameters and 6 objective functions. Incorporated in the framework are sampling schemes, Kriging surrogate modelling, Fourier decomposition, genetic algorithms and adaptive sampling. The MISL3 semi-empirical and Cart3D CFD aero-prediction codes are used to generate an aerodynamic performance dataset. Three aerodynamic optimisation problems are solved for objective functions based on lateral acceleration, time-to-target, range, static stability and roll moment coefficient. Quantitative validation is carried out on the Kriging surrogate model, determining that the mean RMS error is less than 3%. Adaptive sampling is applied to refine the surrogate model. The results are presented in the form of Pareto fronts showing the trade-off in two and three-dimensional objective space. This gives the designer key information on the trade-off and performance of a range of projectile designs. With the exception of range, all of the objective functions were found to be competing. A set of optimal designs were identified, with lateral accelerations of up to 40g. The framework was demonstrated to be robust when dealing with unexpected conditions such as failed simulations. Implementing such a framework in the design of missile systems provides the designer with a wide range of design options and has the potential to provide shorter time-to-market and cost savings for the industry.
2

Characterisation and remediation of depleted uranium munitions residues and aqueous chromium (VI)

Crean, Daniel January 2013 (has links)
Depleted uranium (DU) munitions particles and aqueous chromium(VI) are hazardous and challenging toxic metal contaminants. This thesis develops new approaches for remediating these pollutants, and provides insight into the long term behaviour of DU contamination by characterisation of environmentally aged residues. DU munitions particles exposed to the environment for ~25 years were studied using synchrotron X-ray chemical imaging. Micron-scale domains of U speciation were resolved in particles, indicating heterogeneous formation conditions and a variable extent of particle weathering. Two soil samples from a UK firing range were shown to have different U speciation, linked to environmentally mediated alteration in one soil. This study represents a novel application of X-ray chemical imaging to U in environmental materials, allowing domains of U(IV), U(V) and U(VI) to be resolved. An aged particle containing UFeO4 was shown to contain U(V), providing new evidence for the stability of this oxidation state under environmental conditions. Remediation of DU contaminated soils was studied by chemical extraction using bicarbonate, sulfric acid and citric acid lixivants. Single batch extraction in bicarbonate was the most effective, and able to remove 50% total DU. Residual particles showed partially leached microstructures, and the formation of secondary phases. An alternating pH multi-batch extraction was developed to promote secondary phase dissolution and improve the decontamination yield to a maximum of 87% total DU. In the last section, remediation of aqueous Cr(VI) was studied by reduction to insoluble Cr(III) using a hybrid Pd functionalised biomineral, magnetite. A means to increase the reactive capacity of the Pd-magnetite was demonstrated by addition of sodium formate, and the system performance was not affected by dissolved oxygen or nitrate. Using advanced spectroscopic and microscopic techniques, analysis of the reacted mineral showed Cr(III) was retained in the magnetite structure, and Pd recrystallisation resulted in a loss of reductive capacity.
3

Forging masculinities : armour and the fashioning of identity in Elizabethan England

Littlewood, S. A. January 2016 (has links)
Prior scholarly examinations of armour have mainly been confined to discussions of provenance, technological developments and advances in design. Armour has also been largely overlooked within other disciplinary fields. There has been very little exploration of the complex social and cultural markers embedded within the fabric of these objects and the messages which the wearer may have wished to convey through them. This study seeks to demonstrate that armour should be seen as a dynamic agency rather than an inactive object. It will contribute to existing scholarship by considering armour as a platform through which constructions of both group and individual identity were performed. It is unique in exploring the way in which armour circulated amongst different artistic practices and will use an interdisciplinary approach to question the role these objects and their painted representations played in the fashioning and display of male identity in Elizabethan England. This thesis is original in demonstrating that a further study of these fascinating objects can greatly benefit interdisciplinary research and understanding of historical identity, human experience, material and visual culture. By exploring the ways in which armour and its representations within portraiture facilitated and also dictated representations of elite masculinity, I hope to contribute to a greater understanding of the ways in which material and visual culture were used as platforms for the projection of male identity in late sixteenth- and early seventeenth-century England.
4

Use-wear on Atlantic Middle Bronze Age swords : status indicators or weapons of war?

Bell, David Robert January 2017 (has links)
Use-wear analysis is increasingly employed to interpret the function of prehistoric artefacts and so draw inferences about the intentions of those who commissioned them. The aim of the present study was to develop a clearer understanding of the intended function of prehistoric weaponry, particularly those swords and rapiers recovered along Europe’s Atlantic Facade. The main question posed was: can it be determined from the visible traces on Atlantic Middle Bronze Age long-bladed weapons if they were designed primarily as lethal instruments of combat or did they serve some other, perhaps ceremonial purpose and, if so, what socio-political consequences might this suggest? The development of Bronze Age societies was examined, particularly the roles of warfare as a driver of social complexity and that of the iconic sword wielding warrior. There is, however, little or no evidence in the osteological record for the use of this weapon. The condition of a representative sample of Middle Bronze Age swords and rapiers from the British Isles, Atlantic Europe and the Iberian Peninsula was also recorded and this data augmented using numerous archaeological catalogues. An artefact biography approach, an extension of the chaine operatoire, was then employed to study the design, production, use and disposal of these weapons. Experiments were also conducted to establish that a perceived weakness in Middle Bronze Age weapons, the hilt attachment, was not due to any technical constraints. While the quantity of European material was insufficient for any detailed analysis, that from Britain and Ireland showed several marked differences. Both suffered substantial peri-depositional abuse but the latter displayed clear signs of widespread reuse and subsequent damage in modem times. A comparative study of Irish and British Late Bronze Age swords would probably reveal yet greater modem use, with further work also necessary to determine any taphanomic contribution to apparent damage.
5

Optimisation of design parameters for modular range enhanced projectile

Jelic, Z. January 2016 (has links)
There is an underpinning requirement for artillery systems to achieve longer range, better precision, and an adequate lethal effect. The main objective of this research is to investigate various methods of range increase and propose optimal solution for range extension of existing artillery systems. The proposed solution is novel, modular projectile design. Several methodologies for projectile range increment (such as improved aerodynamics and ballistic profile) were combined to achieve the "goal'", but mainly work was concentrated on projectile's "assisted" propulsion with Base Bleed (BB) and Solid Rocket Motor (SRM). The gun's interior ballistics, i.e. ordnance parameters (propelling charge, volume of combustion chamber, length of the barrel and muzzle velocity) remains unchanged. The novel concept of modular design of an artillery projectile includes separate modules for propulsion, drag reduction, and payload. Various payload module configurations should allow diverse lethal effects, and four different propulsion configurations allow engagement of various targets. Among all "possible' projectile configurations, the focus was on arrangement that will fly longest from given ordnance, with fragmentation effect on target. To achieve projectile's "aims," it required development of new chemical composition for BB and SRM propellant. In addition, new type of BB propellant grain geometry was developed, for efficient base drag reduction (by injecting sufficient amount of gaseous products in the downstream wake zone of the projectile base), and new SRM module was designed for projectile range enhancement. Both propellant compositions and grain shapes were optimised to produce required "thrust" and to withstand severe gun launching conditions - high acceleration and pressure in gun barrel. The research work also includes investigation and optimisation of complex flight mechanics of a gun launched - solid rocket motor propelled - base bleed projectile, as well aerodynamic shape optimisation, and overall modular projectile design optimisation in order to improve payload efficiency. The research work covers theoretical calculations, numerical simulations and their validation through experiments, with results confirming the feasibility of the concept.
6

The development of a laser detonator system

Bowden, Mike January 2015 (has links)
Laser detonators offer several advantages over traditional electrical detonators, such as exploding bridgewire and slapper detonators, in terms of both safety and performance. Laser detonators remove the electrical conduction path to the energetic material, providing immunity from threats such as electrostatic discharge and lightning. A larger separation between the initiating energy source and the explosive devices is possible, up to several tens of metres, compared to a few metres for electrical slapper detonators. A laser detonator system has been developed, with laser-driven flyer plates used to shock initiate the explosive. All aspects of the system, including coupling into an optical fibre, used to transmit the laser energy to the detonator, the optical fibre, the flyer plate launch and acceleration and subsquent shock into the explosive, and the explosive initiation have been investigated, with an understanding of the underlying principles and processes developed. Shock initiation of two secondary explosives, hexanitrostilbene and pentaerythritol tetranitrate, has been studied at extremely high shock pressures, comparable to the detonation pressure, and the critical energy fluence required for initiation established. The laser detonator system is robust and optimised, with design tools developed to enable efficient design of future systems.
7

Polymer microarrays for microbial high-content screening

Wu, Mei January 2012 (has links)
Research on the interactions between microbes and polymeric materials constitutes an important part in antimicrobial identification and provides an insight into microbial response on the polymer surfaces. Herein, a high-content screening method with polymer microarray technology was developed to investigate microbe-polymer interactions, especially in studying adhesion/repellence of microbes (bacteria and parasites). Firstly, the polymer microarray approach was used to successfully identify polymers which either selectively captured or prevented the binding of major food-borne pathogen, Salmonella Typhimurium. A parallel study with a lab strain of Escherichia coli was also carried out, revealing polymers which either displayed a common binding activity or which exhibited species discrimination. Likewise, this polymer microarray technology was applied to more bacterial strains, such as Campylobacter, Clostridium, Streptococcus, Klebsiella and their cocktails to discover families of substrates that displayed strong broad-spectrum bacterial non-binding activity. These synthetic polymers represented a novel class of coating materials which can be used to prevent surface colonisation and subsequent formation of bacterial biofilms. The study of protozoan-polymer interactions was also explored in this thesis. Polymers were identified which either bound or prevented parasites (Crysporidium parvum and Giardia lamblia) binding. Material properties, including wettability, surface roughness and polymer composition were analysed to study correlation of parasite binding and the generation of polymer structure function relationships.
8

Sheaths and scabbards in England, AD400-1100

Cameron, Esther Anita January 1998 (has links)
No description available.
9

Dynamique des tubes parcourus à grande vitesse : influence de la géométrie des tubes et leur environnement sur la justesse et la dispersion / Dynamic of tubes crossed by high speed projectiles : influence of tube and weapon geometry on accuracy and dispersion

Liennard, Mathilda 16 October 2015 (has links)
La précision de tir d’une arme dépend de nombreux facteurs intervenant aux différentes étapes du parcours de la munition (balistique intérieure, intermédiaire et extérieure). Certains travaux ont démontré l’importance de l’influence de la phase de balistique intérieure, pendant laquelle la munition traverse le tube, sur les résultats à la cible. En effet, c’est cette phase qui détermine les conditions de sortie du tube de la munition et par conséquent son comportement au cours du vol. Les conditions d’entrée du projectile, la géométrie du tube et de l’arme, et les mouvements de ces derniers au cours du tir, sont autant de paramètres pouvant modifier l’interaction tube/projectile et ainsi entraîner un changement des vitesses angulaires et de translation de la munition au moment du largage. Cette étude a donc pour but de mettre en exergue les paramètres géométriques de l’arme et du tube qui influencent la justesse et la dispersion. Une analyse statistique a été réalisée à partir de la base de données des résultats de tir du 25 mm. Elle a permis de mettre en évidence l’influence de plusieurs paramètres dont la rectitude du tube. Par la suite, des essais ont été conduits en appareil de tir dans le but d’isoler la part de la géométrie du tube sur les écarts à la cible et ainsi de confirmer la contribution de la rectitude. Un modèle numérique tridimensionnel a été développé afin de faire varier ce paramètre et d’étudier son influence sur le comportement de la munition en phase de balistique intérieure. La représentativité du modèle a été vérifiée à l’aide d’accéléromètres embarqués dans la munition. Ces tirs ont nécessité le développement d’une solution innovante optoélectronique afin de transmettre les accélérations en temps réel. Les résultats expérimentaux obtenus ont permis de constater que les accélérations de la munition modélisée étaient représentatives. Le modèle permet maintenant de réaliser des études paramétriques et de déterminer les profils de tube les plus pénalisants pour la précision de tir. / Gun accuracy is influenced by several factors during the stages of the ammunition course (internal, intermediate and external ballistics). According to previous studies, internal ballistics are the major contributor to deviations from target. Indeed, this phase determines projectile exit conditions and, consequently, his behavior during the flight. The projectile entry conditions, the weapon and barrel geometry and their movements during firing, can modify the interaction tube / projectile and change ammunition angular rates and its transversal velocities. The purpose of this thesis is to determine the parameters related to barrel and gun geometry, which influence the bias and the dispersion. A statistical analysis was led thanks to the data base of the 25 mm firing results. It was found that some parameters, including barrel straightness, affect accuracy. Subsequently, tests were conducted with a firing appliance in order to isolate the barrel geometry influence on the deviations from the target and to confirm the straightness impact. A tridimensional numerical model was created in order to vary this parameter and to study its influence on the ammunition behavior during internal ballistics. The representativeness of the model was validated using accelerometers embedded in the ammunitions. The firing of these ammunitions has required the development of an optoelectronic system to transmit accelerations in real time. The comparison between experimental and numerical results has shown close amplitudes and similar shapes curves that proves the representativeness of the model. The model can be used now to lead parametric analysis and to determine the straightness shapes the most penalizing for gun accuracy.

Page generated in 0.0203 seconds