1 |
Human temperature regulation in wind and wavesPower, Jonathan January 2012 (has links)
Many international and national standards exist for the testing and certification of immersion suits. Some require the thermal protective properties of immersion suits to be tested with human volunteers in calm, circulating 2°C water. The knowledge gap that currently exists between the benign testing conditions used in international standards and specifications, and the harsh environments that an immersed individual find themselves in following a marine accident, could result in unexpectedly poor levels of performance, with fatalities occurring sooner than expected following accidental immersion. Study 1 determined the heat loss from the skin of volunteers in immersion suits and immersed in wind and waves. Twelve healthy participants (Age: 25.8 [5.9] years old; Mass: 81.7 [13.1]kg; Height: 176.2 [7.7]cm) performed four, one hour immersions in the following conditions: Calm water; Wind-only; Waves-only; and Wind + Waves. Compared to Calm (67.21 [4.70]W·m-2), all the other immersion conditions produced a significantly greater increase in mean skin heat flow (MSHF) (Wind: 79.60 [6.70]W·m-2; Waves: 78.8 [4.52]W·m-2; Wind + Waves: 92.00 [8.39]W·m-2). The Wind + Waves condition produced a significantly greater increase in MSHF compared to all other conditions. Study 2 built upon the findings of the first by investigating the extent to which human thermal responses were related to the severity of weather conditions. Twelve healthy males (Age: 23.9 [3.3] years old; Mass: 83.2 [4.9]kg; Height: 181.0 [4.9]cm) performed three, three hour immersions in the following conditions: Calm water; Weather 1; and Weather 2. Compared to the calm water condition (62.96 [2.98]W·m-2], both weather conditions produced a significantly greater increase in MSHF (Weather 1: 76.75 [6.26]W·m-2; Weather 2: 79.53 [6.24]W·m-2). There were no significant differences in the change in gastro-intestinal temperature (TGI) across immersion conditions (Calm: -0.10 [0.31]°C; Weather 1: -0.29 [0.30]°C; Weather 2: -0.20 [0.28]°C]. There were no significant differences in V · O2 across immersion conditions (Calm: 0.325 [0.054]L·min-1; Weather 1: 0.332 [0.108]L·min-1; Weather 2: 0.365 [0.080]L·min-1). Study 3 investigated the effect of simulated water ingress under an immersion suit on human thermal responses during immersions in varying weather conditions. Twelve healthy males (Age: 25.6 [5.6] years old; Mass: 82.7 [10.2]kg; Height: 181.0 [4.7]cm) performed three, three hour immersions in the same conditions as Study 2, but with 500mL of water underneath the immersion suit. Compared to the calm water condition (79.45 [9.19]W·m-2), both weather conditions produced a significantly greater increase in MSHF (Weather 1: 102.06 [11.98]W·m-2; Weather 2: 107.48 [3.63]W·m-2). There were no significant differences in the change in TGI (Calm: -0.35 [0.14]°C; Weather 1: -0.38 [0.15]°C; Weather 2: 0.29 [0.25]°C) or V · O2 (Calm: 0.449 [0.054]L·min-1; Weather 1: 0.503 [0.051]L·min-1; Weather 2: 0.526 [0.120]L·min-1) across conditions. Survival times were calculated for the participants of Studies 2 and 3. There was no difference in the predicted survival times for the Study 2 participants for both the calm (> 36 hours) and wind and wave conditions (> 36 hours). The predicted survival times for the participants of Study 3 were significantly lower in the turbulent conditions (16 hours) compared to calm (27 hours). The predicted survival times of the participants in turbulent conditions were up to half those calculated for calm water immersions. The results collected in Studies 2 and 3 were used to calculate the change in total insulation in varying conditions compared to being dry. Immersions in wind and waves will reduce immersion suit insulation by 27%; 500mL of water leakage will reduce it by 24%; wind, waves and 500mL of water combined will reduce it by 43%. The predicted amount of oxygen consumption (V · O2 P) to produce the amount of heat required to remain in thermal balance can be estimated by rearranging the equations used to calculate metabolic heat production and insulation. If heat loss exceeds the assumed maximum heat production of 206W·m-2, hypothermia will eventually develop. The point at which heat loss exceeds maximum heat production has been determined in a range of conditions. It is concluded that: immersions in wind and waves causes a significant increase in heat flow from the body compared to calm conditions. Testing individuals and immersion suits in conditions not representative of the area where they are to be used may, or may not, result in an over-estimation of performance depending on the capacity of an individual’s thermoregulatory system.
|
2 |
Μελέτη της αλληλεπίδρασης του κεραυνικού πλήγματος με τη σιδηρο-μεταλλική κατασκευή πλοίωνΚαλογιαννάκης, Αντώνιος 14 February 2012 (has links)
Η αντικεραυνική προστασία είναι ένας από τους σημαντικότερους παράγοντες για την προστασία ανθρώπων, κτιρίων, πλοίων κλπ. Σκοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη των φαινομένων που ακολουθούν την πτώση ενός κεραυνού πάνω στην κατασκευή ενός πλοίου και η παρουσίαση των σημαντικότερων μεθόδων και τεχνικών που χρησιμοποιούνται για τον σχεδιασμό ενός αποτελεσματικού συστήματος αντικεραυνικής προστασίας πλοίου.
Στο 1ο Κεφάλαιο γίνεται μία παρουσίαση των ηλεκτρικών ιδιοτήτων της ατμόσφαιρας και των σημαντικότερων ειδών κεραυνικών εκκενώσεων. Επίσης, γίνεται περιγραφή του μηχανισμού δημιουργίας και ανάπτυξης του κεραυνού, των σημαντικότερων παραμέτρων του καθώς και των παραγόντων που τον επηρεάζουν.
Στο 2ο Κεφάλαιο ορίζονται διάφορες φυσικές έννοιες που αφορούν την αντικεραυνική προστασία των πλοίων και περιγράφονται οι φυσικοί μηχανισμοί που εμφανίζονται κατά την διάρκεια ενός κεραυνικού πλήγματος αλλά και αυτοί που θα πρέπει να λαμβάνονται υπόψη κατά τον σχεδιασμό του συστήματος προστασίας.
Στο 3ο Κεφάλαιο περιγράφεται λεπτομερώς: ο μηχανισμός αλληλεπίδρασης του κεραυνού με την κατασκευή πλοίου, τα φυσικά φαινόμενα που αναπτύσσονται, καθώς και οι κίνδυνοι που μπορεί να υφίστανται λόγω αυτών, και για τον άνθρωπο αλλά και για τα συστήματα του πλοίου.
Στο 4ο Κεφάλαιο γίνεται μία αναλυτική παρουσίαση των σημαντικότερων μεθόδων για την εκτίμηση της ζώνης προστασίας ενός συστήματος αντικεραυνικής προστασίας, που είτε χρησιμοποιούνται στην πράξη είτε βρίσκονται ακόμα σε θεωρητικό επίπεδο. Επίσης, παρουσιάζονται τα αποτελέσματα της σύγκρισης των διαφόρων αυτών μεθόδων καθώς και μία βελτιωμένη έκδοση του μοντέλου της κυλιόμενης σφαίρας που προέκυψε από πειραματική μελέτη του εργαστηρίου υψηλών τάσεων του Πανεπιστημίου της πολιτείας του Μισσισσιππή.
Στο 5ο Κεφάλαιο, λαμβάνοντας υπόψη τις ιδιαίτερες απαιτήσεις αλλά και τις ιδιαιτερότητες που παρουσιάζει η αντικεραυνική προστασία των πλοίων, περιγράφονται τα ιδιαίτερα χαρακτηριστικά που θα πρέπει να έχει ένα τέτοιο σύστημα με βάση τις πρόσφατες μελέτες. Τέλος, δίνονται πραγματικά παραδείγματα συστημάτων προστασίας που χρησιμοποιούνται σήμερα σε διαφορετικούς τύπους πλοίων. / Lightning protection is one of the most major factors in protecting people, buildings, ships, etc. The purpose of this project is the study of phenomena that follow a lightning strike on a ship and the presentation of the significant methods and techniques which are used to design an effective marine lightning protection system.
In the 1st Chapter, the electrical properties of the atmosphere and the most major types of lightning discharges are presented. Moreover, the mechanism of the creation and development of lightning, its most important parameters and the factors that influence it are described.
In the 2nd Chapter, various physical concepts relating to the lightning protection of ships are set out. Also, the physical mechanisms that occur during a lightning strike and those that should be taken into consideration on designing the system protection are described.
In the 3rd Chapter are described in detail: the interaction mechanism of lightning with the ship, the natural phenomena that are caused by lightning and the risks that may develop because of them, not only for the people but also for the systems of the ship.
In the 4th Chapter, is taking part a detailed presentation of the major methods for the assessment of the protection zone of a lightning protection system, which are used either in operation or are still at a theoretical level. Also, are presented the results of the comparison all of these methods and an improved version of rolling sphere model, which showed after the experimental study of the high voltage laboratory of the University of the state of Mississippi.
In the 5th Chapter, taking into consideration the specific requirements and the specifities of marine protection, the special features of such a protection system, based on recent studies, are described. Finally, real examples of protection systems which currently used in different types of ships are given.
|
3 |
Μελέτη επιπτώσεων πληγμάτων κεραυνών σε πλοίαΤελώνης, Άγγελος 13 October 2013 (has links)
Τα πλοία αποτελούν πιθανό στόχο ενός κεραυνικού πλήγματος. Η μελέτη και η προσομοίωση ενός κεραυνού σε δύο διαφορετικά πλοία για διάφορα σημεία πτώσης έγινε με χρήση του προγράμματος Vector Fields Opera 3D Cobham.
Στο κεφάλαιο 1, γίνεται μία συνοπτική παρουσίαση των ηλεκτρικών ατμοσφαιρικών φαινομένων που οδηγούν στην εμφάνιση του κεραυνού. Επίσης, παρουσιάζονται τα διάφορα είδη κεραυνικών πληγμάτων, οι ισοδύναμες κυκλωματικές αναπαραστάσεις αυτών και η συχνότητα πτώσης κεραυνών.
Στο κεφάλαιο 2, αναφέρονται οι διάφορες μέθοδοι υπολογισμού πεδιακών μεγεθών και γίνεται μια πιο εκτενής αναφορά στη μέθοδο των πεπερασμένων στοιχείων. Ακολούθως, παρουσιάζεται το πρόγραμμα Opera 3D στο οποίο έγινε η προσομοίωση του κεραυνού. Γίνονται αναφορές στης εξισώσεις και τον αλγόριθμο που χρησιμοποιεί το πρόγραμμα για τον υπολογισμό των ηλεκτρομαγνητικών μεγεθών του εκάστοτε προβλήματος.
Στο κεφάλαιο 3, παρουσιάζονται οι προσομοιώσεις που πραγματοποιήθηκαν με το συγκεκριμένο πρόγραμμα. Αρχικά αναφέρεται η προσέγγιση του κεραυνικού πλήγματος με στόχο να προσαρμοσθεί στις δυνατότητες του προγράμματος. Στη συνέχεια αναφέρονται τα δύο μοντέλα πλοίων που χρησιμοποιήθηκαν (USS Somerset, HMS Albion) και τα σημεία τα οποία επιλέχθηκαν να πληγούν από κεραυνό. Επιλέχθηκαν τέσσερα σημεία σε κάθε πλοίο (πλώρη, πρύμνη, δύο κορυφές) και εφαρμόσθηκε η οριακή συνθήκη της μέγιστης τιμής του ρεύματος ενός χαρακτηριστικού κεραυνού. Σαν αποτέλεσμα προέκυψε η πυκνότητα ηλεκτρικού ρεύματος, για τις διάφορες περιπτώσεις, στο σύνολο της επιφάνειας του πλοίου και της θάλασσας.
Στο κεφάλαιο 4, σχολιάζονται οι διαφορές που προέκυψαν στα δύο διαφορετικά πλοία καθώς και στα διαφορετικά σημεία πλήγματος. Επίσης παρουσιάζονται οι κανονισμοί προστασίας πλοίων, ανθρώπων και συσκευών που πρέπει να τηρούνται. Τέλος, με χρήση της μεθόδου κυλιόμενης σφαίρας γίνεται μία εκτίμηση της προστασίας έναντι κεραυνών στο κάθε πλοίο. / Naval ships are possible targets of a lightning strike. A study and simulation of a lightning strike in two different ships for different stress points is executed with Vector Fields Opera 3D Cobham.
In chapter one, an overview of electrical atmospheric phenomena that lead to the appearance of lightning is given. Also, there are presented various kinds of lightning strikes, equivalent circuit representation of lightning current and frequency lightning maps.
In chapter 2, various methods of calculating electromagnetic fields are presented and a more extensive report on the finite element method is described. Furthermore, the Opera 3d program is described, which simulates the lightning strike. The equations that are computed, the algorithm and the methods of calculating the electromagnetic field of Opera 3d are fully analyzed.
In chapter 3, the performed simulations are presented. Firstly, the lightning approach is described. The approach was made in order to adapt to the capabilities of the program. Two ships with different dimensions (USS Somerset, HMS Albion) are designed. For the solution of the electromagnetic problem the lightning strike is approximated with the peak value of a standard strike waveform and the current density results are analyzed over the ship for four different stress points.
In chapter 4, the differences that resulted from the two different ship’s simulations and different striking points are described. Several regulations of ship, human, electric devices, protection against lightning are presented and must be observed. Finally, using the rolling sphere method, lightning protection in each vessel is estimated.
|
Page generated in 0.0166 seconds