• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 38
  • 17
  • 16
  • 16
  • 16
  • 16
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The design and optimisation of cold asphalt emulsion mixtures

Ojum, Chibuzor Kingsley January 2015 (has links)
Road structures are important to the survival of nations. As the cost for the rehabilitation and maintenance of highways soars, civil engineers and administrators face the ever present difficulty of meeting current resurfacing and rehabilitation needs. The deterioration of road structures under growing traffic weight and volume is occurring faster than agencies envisaged coupled with increasingly scarce and expensive new materials required. It is now apparent that for planning, design and construction for road structures, the most efficient and cost effective processes, materials and practices available must be appropriately considered. The use of recycled materials as a sustainable alternative is gaining significant worldwide attention. The overall purpose of this research was to conduct an in-depth investigation and analysis into the design and optimisation of Cold Asphalt Emulsion Mixtures (CAEMs) incorporating high contents of Reclaimed Asphalt Pavements (RAP). To achieve the objectives of the research, four proportions of RAP aggregate materials in addition to Virgin Aggregates (VA) were used as categorised below: - Category 1: 0% RAP (no RAP, 100% VA) - Category 2: 50% RAP (50% RAP, 50% VA) - Category 3: 85% RAP (85% RAP, 15% VA) - Category 4: 95% RAP (95% RAP, 5% VA) The effect of mixing and compaction temperatures at 5°C, 20°C and 32°C and how cement at 0%, 1% and 3% OPC influenced the CAEMs was also investigated. This study presents a practical mix design procedure to act as a guideline for CAEMs incorporating high RAP contents by identifying critical parameters for the various categories of CAEMs which stemmed from the fact that currently there is no universally accepted mix design. The proposed mix design guideline is presented in this thesis. The effect of accelerated curing was investigated to study the effects of temperature, curing duration, conditioning and the influence of cement on the CAEMs. The research showed that an increase in curing temperature results in an increase in the stiffness and strength of the CAEMs. The thesis presents results on the mechanical and performance properties which provided vital information on expected performance of CAEMs incorporating high contents of RAP for use as a road base material. The research was able to highlight the purported effects of residual binder in RAP which could contribute positively to the mechanical and performance properties of the CAEMs. This points to the fact that treating RAP as “black rock” is not the right approach. The RAP needs to be evaluated for its inherent properties and suitability for purpose. The stiffness and strength were investigated using the Indirect Tensile Stiffness Modulus (ITSM) and Indirect Tensile Strength (ITS) tests which proved useful in ranking them. The addition of 1% OPC improved the stiffness of Categories 1-3 mixtures by 32% with Category 4 having the highest increase at 89%. The inclusion of 3% OPC, more than doubled the stiffness values. The Indirect Tensile Fatigue Test (ITFT) was used to investigate the fatigue characteristics. Results showed that if the CAEMs with cement at 1% and 3% experienced strains in the region of 200µε, they tend to fail suddenly soon after crack initiation due to reduced flexibility of the CAEMs. This was more pronounced for the CAEMs at 3% OPC. Resistance to permanent deformation was investigated using the Vacuum Repeated Load Axial Test (VRLAT) which showed that the mixing and compaction temperature influenced the permanent deformation characteristics of the CAEMs. Increasing OPC content to 1% for Categories 2 and 3 resulted in a decrease in permanent strains of 47% and at 3% OPC, the decrease in permanent strains was 54%. Wheel Tracking Test (WTT) was conducted to ascertain the susceptibility of the CAEMs to deform under loading, investigate crack propagation and number of cycles to failure. The test showed that the performance of the specimens was affected by the test temperature. Increased test temperatures resulted in an increased rate of rutting and eventual failure of the specimens. The test further highlighted the positive benefits of adding cement to the mixtures which resulted in reduced strains and an increased number of cycles to failure for the CAEMs. Structural design and modelling was conducted using KENLAYER which was able to account for the non-linearity of the CAEMs. This was crucial in having a total overview of these mixture types. Although, the structural design was based on practical hypothetical layer thicknesses, the results provided useful insight into the structural capabilities of the CAEMs. The RAP CAEMs generally had lower horizontal tensile strain values in comparison to the VA CAEMs. The design charts showed that an increase in the thickness of the base course and surfacing layer resulted in an increase in the overall fatigue life of the pavement structure. Overall, evaluating the complete findings of this research, CAEMs produced with high RAP contents especially at 50% and 85% RAP had considerably enhanced mechanical and performance properties and are suitable for inclusion as a base material for reconstruction and rehabilitation.
32

Foamed bitumen stabilised sandstone aggregates

Haji Abdul Karim, Roslinah January 2015 (has links)
Roads form a key element for the expansion of economy and development of a country. As with most countries, Brunei Darussalam has been facing a rapid development to meet the economic growth that requires an efficient road network. Therefore, the scarcity of conventional road aggregates in Brunei Darussalam means that the country has a strong dependence on imported aggregates from overseas to construct quality roads. Further restrictions on local road specifications make it almost impossible to include low quality granular materials. The study reported in this thesis was undertaken on the basis that the dependence on overseas resources is not a viable long- term solution. The research task has been, therefore, to ascertain the quality of local sandstones for road construction and then to propose means to upgrade their performance quality for optimum utilisation in cost effective applications. This study focused on the road base layer since that is where most aggregate is used. The approach used for this study was to identify the common rock in Brunei Darussalam and review the candidate treatment methods. A weighted matrix for these candidate treatment methods was constructed to determine the overall ranking with selected key criteria on the basis of the local climatic condition, construction preferences and traditions. From the reviews, Foamed bitumen was selected as a feasible treatment method that can improve the sandstone characteristics under local conditions. Three curing conditions were adopted in this study, simulating extreme field conditions in Brunei Darussalam, to characterise the mechanical properties of foamed bitumen stabilised sandstone mixtures, termed 'foam mix'. The following tests were conducted: • The response of stiffness modulus behaviour in the foam mix produced at different levels of mixing moisture content and cement content under dry and wet conditions was measured to study the mixing moisture content (MMC) in foam mix design. • A humid curing study was performed to indicate the short term stiffness of foam mixes in order to aid in the prediction of the delay necessary before a road comprising these foam mixes could be opened to traffic, and to determine how curing time and moisture content affect the development of stiffness modulus with and without cement. • A preliminary investigation was carried out into the potential of coir fibres as a reinforcement agent in the foam mix, measuring its effect on stiffness modulus, tensile strength and permanent deformation. • Being sensitive to moisture, the climatic durability of foam mix was further assessed by studying the effect of dry/wet cycles on the stiffness modulus incorporating other additives such as hydrated lime and pre-blended bitumen with wet fix. • Microscopic analysis has been undertaken as a guide to characterise the microstructure of the foam mix incorporating additives such as cement and coir fibres in order to support the laboratory findings. The laboratory results confirmed that the stiffness behaviour of the foam mix could be influenced by the amount of MMC, cement content and humidity of the environment. It was found that the foam mix with 1% cement (by mass of dried aggregates) at MMC, 70% of OMC, produced a durable mixture with a high stiffness modulus value in both dry and wet conditions as well as when subjected to the effect of alternate dry and wet cycles. The investigation on the potential of coir fibre to reinforce the foam mix indicated that the fibre did help to prevent large cracks in the foam mixes but unfortunately the reinforced foam mixes were easily damaged under a wet environment.
33

Performance of warm mix asphalt compacted at reduced temperature

Jalali, Venon January 2016 (has links)
The generic term Warm Mix Asphalt (WMA) refers to a variety of bituminous mixtures, which are produced through specific technologies, at temperatures approximately 15°C to 70°C lower than the typical production temperature range of conventional Hot Mix Asphalt (HMA) (i.e. 135°C to 160°C). The lower production temperatures of WMA offer a sustainable and environmental-friendly alternative to HMA via reducing the fuel consumption and greenhouse gas emission. Application of asphalt involves mixing, hauling, placement and compaction. As a general rule for HMA, if, during delivery and compaction, the mixture’s temperature drops below the minimum allowable production temperature at which adequate compaction can be achieved, then significant reductions in the performance of the resultant mixture is expected. In the case of WMA, it is expected that the effects of cool compaction on the properties and performance of the mixture will be less easily described than in HMA. This is due to the complicating presence of additives, which may modify the chemical, rheological and mechanical properties of the bitumen, as well as modifying the surface energy of both bitumen and aggregate, all of which can, consequently, affect the properties and performance of the resultant WMA mixture in a complex way not directly comparable to HMA mixtures. The overall goal of this research has been to investigate the effects and implications of temperature decline on the mechanical performance of WMA mixtures, produced in two different ways, included a ‘wax/organic additive’ technology (using a Fischer-Tropsch paraffin wax) and a ‘chemical additive’ technology (using a cationic surfactant liquid), along with determining the fundamental reasons for such effects. For this purpose, a devised comprehensive matrix of laboratory tests was performed on the produced wax-modified and chemical-additive-modified binders in order to provide the mechanical and rheological characterisation of the binders as well as their surface energy properties. The associated wax-WMA and chemical-additive-WMA, also different reference HMA mixtures were fabricated via mixing at recommended and adequate temperatures (according to the standard or the additive supplier’s advice) and compacting at a declining series of temperatures using two different compaction methods (i.e. gyratory compaction and roller compaction). A devised comprehensive set of laboratory tests was then carried out to fully characterise the manufactured WMA mixtures and their counterpart reference HMA mixtures via studying and understanding the influence of reduced production temperatures on their mechanical performance characteristics, including volumetric properties, stiffness modulus, fatigue resistance, rutting potential and viscoelastic behaviour representatives (complex stiffness modulus). The binder-aggregate dry bond strength of the various binder and aggregate combinations used in the asphalt mixtures was evaluated using the surface energy calculations combining the surface energy properties of the different binders and aggregates (pure and modified). Moreover, a mechanical assessment test was performed on different coating samples of the various binder and aggregate combinations to evaluate the binder-aggregate adhesive or binder cohesive tensile strength in different mixtures. The results show that compaction at lower temperatures does not have a considerable effect on the performance of asphalt mixtures, whether they contain additives or not, unless it occurs below 100°C (i.e. 80 and 85°C), in which case, in spite of some limited negative influences on asphalt performance, overall behaviour still remains in acceptable ranges. Moreover, it seems that overall, additives increase the sensitivity of asphalt mixtures’ properties to production temperatures variations. It was also found that gyratory compactors compact asphalt mixtures to a certain density regardless of the temperature (and probably material) because they are, in effect, strain-controlled. Thus, the compaction process in a gyratory compactor is widely insensitive to temperature. Therefore gyratory compaction is not a suitable method for investigating the performance of compaction site that imposes a fixed or set vibratory stress.
34

Moisture damage of aggregate-bitumen bonds

Zhang, Jizhe January 2016 (has links)
Moisture damage of the asphalt mixture is defined as the loss of strength, stiffness and durability due to the presence of moisture (in a liquid or vapour state) leading to adhesive failure at the aggregate-bitumen interface and/or the cohesive failure within the bitumen or bitumen-filler mastic. The presence of moisture can accelerate the distress of asphalt pavement in several different modes, such as rutting, fatigue cracking, thermal cracking and the formation of potholes. In the field, the moisture damage normally happens first at the interface of two pavement layers or at the bottom of pavement layers and develops gradually upward. Once moisture has come into contact and interacted with the asphalt mixture, moisture damage could be developed by the following mechanisms: detachment, displacement, spontaneous emulsification, pore pressure, and hydraulic scour. It should be mentioned that moisture damage is not limited to only one mechanism but is the result of a combination of several mechanisms. As mentioned previously, the common modes of moisture damage of asphalt mixtures are a loss of adhesion between the aggregate and bitumen and/or a loss of cohesion in the mixture. Among these two failures, the adhesive failure is recognised as the main mode of moisture damage. Hence, the physico-chemical interactions between aggregates and bitumen in the presence of moisture are believed to partially govern the moisture sensitivity of asphalt mixtures, which can also affect the serviceability, performance and durability of the asphalt pavement. This thesis describes the work that was carried out with regard to the moisture damage evaluation of aggregate-bitumen bonds through different procedures. The fundamental properties of the individual material such as the chemical composition and rheological properties of bitumen, moisture absorption, surface morphology and mineralogical composition of aggregates were first characterised. Two types of equipment, namely the dynamic contact angle (DCA) analyser and dynamic vapour sorption (DVS) system were used for determining the surface energy of the bitumen and aggregates, respectively. The obtained surface energy results were then combined thermodynamically to determine the work of adhesion between aggregate and bitumen, and the reduction in the adhesive properties if water is introduced into the system. Three established mechanical tests consisting of the standard peel test, Pneumatic Adhesion Tensile Testing Instrument (PATTI) test and a pull off test were developed and redesigned to make sure that these tests are practical, reliable and feasible to measure the bonding strength of aggregate-bitumen combined specimens. The composite substrate peel test (CSPT) was developed to prepare composite substrates using crushed coarse aggregates as a more practical replacement for the aggregate substrates prepared from aggregate boulders. Finally, the moisture damage results from mechanical tests and thermodynamic results were compared and correlated with the basic physico-chemical properties of the original materials. The results showed that in the dry condition, all techniques used in this research, including the mechanical tests and the surface energy tests led to similar results, with bitumen rather than aggregates dominating the bonding properties of aggregate-bitumen systems. After moisture conditioning, the four mechanical tests, including standard peel test, CSPT, PATTI test and pull-off test showed similar moisture sensitivity ranking and failure surface results demonstrating the good correlation between these four tests. In addition, based on the comparison conducted, the four mechanical tests are all considered to be reliable to evaluate the moisture sensitivity of different aggregate-bitumen systems. However, based on the aggregates considered in this research, the moisture sensitivity parameters obtained from the surface energy tests are suggested unreliable to evaluate the moisture sensitivity of aggregate-bitumen systems.
35

Δυναμική ανάλυση οδοστρώματος τριών στρώσεων υπό την επίδραση κινούμενων φορτίων

Μανωλακάκης, Χαράλαμπος 11 October 2013 (has links)
Η παρούσα εργασία μελετά αναλυτικά – αριθμητικά υπό συνθήκες επίπεδης παραμόρφωσης τη δυναμική απόκριση οδοστρώματος επί εδάφους δύο στρώσεων σε κινούμενα με σταθερή ταχύτητα φορτία. Η ανώτερη στρώση αποτελείται από ασφαλτικό σκυρόδεμα, η μεσαία στρώση από ποροελαστκό υλικό χωρίς νερό στους πόρους και το κατώτερο στρώμα με ποροελαστικό πλήρως κορεσμένο υλικό. Το όλο σύστημα υποστηρίζεται από απαραμόρφωτο βραχώδες υλικό. Στο σύστημα οδοστρώματος – εδάφους χρησιμοποιήθηκε η θεωρία του Biot με την τροποποίηση των Mei and Foda για το μεσαίο και το κατώτερο στρώμα και η θεωρία ιξωδοελαστικότητας των Sousa and Monismith για το ασφαλτικό σκυρόδεμα. Το φορτίο καθώς και η απόκριση προσομοιώνονται με σειρές Fourier. Έτσι οι εξισώσεις για κάθε στρώση καταλήγουν σε συνήθεις διαφορικές που επιλύονται αναλυτικά. Για τις συνοριακές συνθήκες του προβλήματος ισχύει η ισορροπία των ενεργών τάσεων και πιέσεων και η συνέχεια των μετακινήσεων και έτσι δημιουργείται ένα σύστημα 14 εξισώσεων με 14 αγνώστους. Η λύση του συστήματος δίνει τα διαγράμματα των τάσεων, των παραμορφώσεων και της πίεσης του νερού των πόρων σε οποιοδήποτε σημείο του εδαφικού όγκου, κάθε χρονική στιγμή. Τα αποτελέσματα παρουσιάζονται γραφικά και συγκρίνονται για διάφορες τιμές των παραμέτρων με αντίστοιχα άλλων εργασιών. Η παρούσα μέθοδος περιγράφει επαρκώς τόσοτην απόκριση ενός μέσου τριών στρώσεων που υπόκεινται σε κινούμενη φόρτιση, όσο και την εξάρτηση των παραμέτρων αυτών μεταξύ τους. / -
36

The response of vehicle components to random road surface undulations

Dodds, Colin J. January 1972 (has links)
Standard techniques of random vibration analysis have been applied to the problem of determining the response of vehicle components to random road surface undulations. A simple road classification method, which will typify the general terrain inputs to vehicles is proposed and is based on the knowledge of the spectral density of any 1ongitudinal track. Finally, this work introduces a novel technique for simulating in the laboratory the response of a. vehicle to road profile excitation. Three analytical models of increasing complexity are used to describe the road surface roughness. The first considers the road as consisting of a cylindrical surface which can be defined by means of a single longitudinal track of (x), treated as a member function of a Gaussian random process.
37

An investigation of cement coating for aggregates in bituminous material

Vaughan, Karl Andrew January 1999 (has links)
This research was designed to investigate the properties of aggregate with a new cement coating applied, and to test the effect of including this aggregate in a bituminous road mixture. The investigation was divided into three main areas of study. They were, chemical and physical testing of the aggregate, and testing of a bituminous road mixture containing the modified aggregate, namely porous asphalt wearing course. Chemical testing involved a regime to show the affinity between coated and uncoated aggregates, and bitumen, in terms of adsorption, and desorption in the presence of water. Physical testing included all the common tests for demonstrating the advantageous properties of an aggregate. These tests included, the shear box test, the polished stone value test, the aggregate crushing value test and tests for surface roughness. Porous asphalt was chosen as a suitable road material for testing the effects of the modified aggregate on a bituminous material, as it is a stone matrix dependant mixture and is currently enjoying increased acceptance Europe wide as a driver friendly, high quality surfacing material. Tests applied included the repeat load axial, and the repeat load indirect tensile tests. In order to undertake large parts of the testing program, much of the equipment was constructed by the researcher at Liverpool John Moores University (LJMU). This included the shear box apparatus and the repeat load axial test apparatus. These were both designed to the relevant British standards and verified as being so. Observations made during the testing programme showed the coated aggregates displayed a useful improvement in their chemical and physical properties over uncoated aggregates in almost all the areas tested. Future recommendations include mass production prototyping so that the coated aggregate mixtures can be placed in road trial sections.
38

Ανάπτυξη συστήματος διαχείρισης οδοστρωμάτων με αξιολόγηση στοιχείων βιωσιμότητας

Σωτηροπούλου, Μαρία Ιωάννα 26 May 2015 (has links)
Τα συστήματα διαχείρισης οδοστρωμάτων χρησιμοποιούνται ευρύτατα από τους φορείς οδοποιίας και συνεχώς βελτιώνονται επειδή μπορούν να οδηγήσουν σε σημαντική εξοικονόμηση κεφαλαίου και σε υψηλά επίπεδα εξυπηρέτησης του οδικού δικτύου. Στόχος τους είναι η αξιολόγηση των αποφάσεων συντήρησης και διαχείρισης των οδοστρωμάτων για την αποτελεσματική κατανομή των περιορισμένων διαθέσιμων πόρων. Τα σύγχρονα συστήματα που έχουν αναπτυχθεί χρησιμοποιούν μεθόδους τεχνητής νοημοσύνης για την επίλυση του προβλήματος αφού αποτελούν ισχυρά εργαλεία βελτιστοποίησης με μεγάλες υπολογιστικές ικανότητες. Η πλειοψηφία των συστημάτων που έχουν δημιουργηθεί εντοπίζει τη βέλτιστη λύση που ελαχιστοποιεί το κόστος συντήρησης χωρίς να λαμβάνεται υπόψη το αντίκτυπο της επιδείνωσης της κατάστασης του οδοστρώματος στο χρήστη και στο περιβάλλον. Ωστόσο, τα σύγχρονα οδικά έργα είναι αναγκαίο να χαρακτηρίζονται από βιωσιμότητα που απαιτεί την ελαχιστοποίηση των αρνητικών επιπτώσεων που οφείλονται στην κατάσταση του οδοστρώματος. Στόχος της παρούσας μεταπτυχιακής εργασίας είναι η ανάπτυξη ενός συστήματος διαχείρισης οδοστρωμάτων το οποίο αποσκοπεί στην παροχή υποστήριξης αποφάσεων για τις κατάλληλες στρατηγικές συντήρησης ώστε να εξασφαλιστούν αποδεκτά επίπεδα ασφάλειας και λειτουργικότητας του δικτύου των αυτοκινητοδρόμων στη διάρκεια του χρόνου καθώς και μείωση των περιβαλλοντικών επιπτώσεων. Το μοντέλο που παρουσιάζεται δεν περιορίζεται μόνο στο κόστος συντήρησης, όπως οι περισσότερες μελέτες, αλλά επικεντρώνεται στο γενικευμένο κόστος που περιλαμβάνει το κόστος συντήρησης, το κόστος χρήστη και το περιβαλλοντικό κόστος. Το κόστος χρήστη αποτελείται από το κόστος λειτουργίας οχήματος, το κόστος μετακίνησης και το κόστος ατυχημάτων. Το κόστος του περιβάλλοντος συνίσταται από το κόστος εκπομπής των αέριων ρύπων, το κόστος θορύβου και το κόστος στην οικονομική, κοινωνική και πολιτική ζωή. Τα δεδομένα του προβλήματος σχετίζονται με την αρχική κατάσταση των οδοστρωμάτων που πρόκειται να συντηρηθούν, το είδος και τα χαρακτηριστικά της οδού, το είδος και τα χαρακτηριστικά των οχημάτων, τα διαθέσιμα είδη συντήρησης και το ύψος της χρηματοδότησης. Εξαιτίας του μεγέθους και της πολυπλοκότητας του προβλήματος, η βελτιστοποίηση πραγματοποιήθηκε με την εφαρμογή ενός γενετικού αλγορίθμου που έχει τη δυνατότητα να εξετάσει πλήθος οδικών τμημάτων αναζητώντας ένα ευρύ φάσμα πιθανών λύσεων μέσα σε ένα εύλογο χρονικό διάστημα υπολογισμού. Ο αλγόριθμος καταφέρνει να εντοπίζει τον κατάλληλο συνδυασμό συντηρήσεων ώστε το γενικευμένο κόστος να ελαχιστοποιείται ενώ ταυτόχρονα το οδόστρωμα να διατηρείται σε καλή κατάσταση. Για την αξιολόγηση του μοντέλου ερευνήθηκαν πολλές διαφορετικές περιπτώσεις ενώ στο τέλος σχεδιάστηκε η καμπύλη Pareto. Τα αποτελέσματα απέδειξαν ότι το προτεινόμενο σύστημα μπορεί να βοηθήσει αποτελεσματικά στη διατήρηση των οδοστρωμάτων σε ικανοποιητικά επίπεδα λειτουργικότητας και κόστους μέσω των αποφάσεων συντήρησης που προτείνει. / Pavement management systems are widely used by road agencies and are improved continuously as they can lead to money savings and high levels of road services. The aim is to provide assistance to decision makers for selecting optimum strategies in the design, evaluation, and maintenance of pavements in order to maintain them in serviceable condition over a given period of time for the least cost. Nowadays, the developed systems use artificial intelligent methods to solve the problem which are powerful optimization tools with large computational abilities. The majority of pavement management systems detect the optimal solution that minimizes the maintenance cost without considering the impact of pavement deterioration in the user and the environment. However, they should be characterized by sustainability that requires an efficient use of resources and sensitivity to environmental and social constraints. In this paper, an optimisation model is developed that aims to provide decision support to engineers in developing appropriate pavement maintenance strategies to ensure acceptable levels of safety and functionalism of the highway network in time as well as reduction of environmental impacts. The model supersedes previous ones in considering the generalised cost, which includes the agency cost, the user cost, and the environmental impacts, as the main decision parameter. The user cost consists of three main components, the vehicle operation cost, the travel cost and the accident cost. The environmental cost consists of the air pollution cost and the noise cost. The input data are related to the initial pavement condition, the type and characteristics of the road, the type and characteristics of vehicles, the maintenance types and the budget limit. Due to the problem size and complexity, the optimisation is done with the employment of a genetic algorithm which can handle a large number of road sections, search a wide range of possible solutions, and reach a solution within reasonable computation time. The genetic algorithm can find the appropriate maintenance types in order to minimize the generalized cost while the pavement is kept in good condition. The model has been evaluated with several test cases and Pareto curves have been developed. The results indicate that the proposed model can effectively assist pavement preservation and management decisions in highway networks.

Page generated in 0.0369 seconds