• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 2
  • 1
  • Tagged with
  • 268
  • 47
  • 45
  • 40
  • 39
  • 35
  • 34
  • 25
  • 22
  • 20
  • 20
  • 14
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Radioactive waste treatment using zeolites

Mikhail, Kamal Yousif January 1981 (has links)
No description available.
152

Studies on the influence of borate species on the uptake of caesium onto natural zeolites used in nuclear waste treatment

Princewill, Fubara Ferdinand January 1994 (has links)
No description available.
153

Uses of amorphous zirconium phosphate in the treatment and containment of nuclear wastes

Zamin, M. January 1991 (has links)
No description available.
154

Inorganic anion-exchangers for the treatment of radioactive wastes

Jamil, M. January 1987 (has links)
No description available.
155

Nuclear waste treatment using novel inorganic ion exchange materials

Al-Hindi Al-Attar, Lina January 2003 (has links)
No description available.
156

A combined trace metal/radionuclide study of the Clyde sea area

Smith-Briggs, J. I. January 1983 (has links)
No description available.
157

Influence of seawater components upon actinide behaviour

McCubbin, David January 1993 (has links)
No description available.
158

Radon in the groundwater in the chalk of East Anglia

Low, Robert January 1996 (has links)
No description available.
159

Phytoremediation and rhizosphere manipulation using different amendments

Sheta, Omar T. January 2006 (has links)
In two pot experiments using two different crop ryegrass (Lolium perenne) and two flax (Linum usitatissimum) varieties Viola and Elise, ryegrass decreased in the pool of heavy metals compared with bare soil using EDTA as extractant. NH4+ decreased the soil pH, increased EDTA-extractable Zn and increased the Zn uptake. Lime addition increased the pH and depressed Zn uptake. The pool of extractable EDTA was not changed by growing both of the flax varieties. Lime increased EDTA-extractable Cu and Pb significantly, but decreased the Zn, and pH increased in this order NH4+<NO3-<NH4++lime<NO3-+lime. The EDTA –extractable Cu decreased in the order NO3-+lime>NH4++lime>NH4+>NO3-. Ammonium decreased the pH more than other treatments. In agar using Bromocresol purple indicator NH4+ increased the pH in the rhizosphere of different plants. With two different initial pH treatments (7 and 3.2) the NH4_ decreased the pH in the rhizosphere at high initial pH 7 and maintained the low pH at initial pH 3.2 to 4 against the buffer capacity. At different initial pH 4, 5, 6, 7 and 8 the ammonium decreased the high pH and maintained the low pH, but NO3- had no effect on the pH. Ammonium increased the toxicity of Zn due to pH decreases. There was no effect of both nitrogen sources NH4+ or NO3- on rhizosphere pH when applied as a foliar application. These indicated that the NH4+ can decrease the pH in the rhizosphere of plants and could play an important role in manipulation of the rhizosphere bioavailability of heavy metals. Toxicity of the three metals is Cu>Pb>Zn in this order and the crops tolerance is following this order pea>flax>barley. An agar-Hoagland nutrient solution contaminated with two soils, sewage treated soil (SBS) and galena soil (G), was used with flax as a test crop. The ammonium treatment lowered the pH in both soils, but with galena treated greater than SBS soil, this is attributed to the buffering capacity of the SBS soil. Averaged over all the concentrations the NF4+ treatments resulted in higher Zn shoot content that NO3- treatment, while in Cu shoot content nitrate was more than ammonium. The transfer factor of lead with ammonium treatment was greater than nitrate treatments at the 0.1 and 0.25% galena and the transfer factor of the Zn and Pb more than Cu in all treatments. At high initial pH 8 and high concentration of Zn and Cu barley grew well and this is attributed to immobilisation of Zn and Cu compared with low pH 5 and 6.5 where the barley plant did not survive. Ammonium lowered the high pH 8 and caused lower biomass production of barley than nitrate.
160

A model approach to radioactive waste disposal at Sellafield

McKeown, Christopher January 1997 (has links)
Sellafield in West Cumbria is the potential site of a repository for radioactive, Intermediate Level Waste (ILW). The proposed repository lies at 650 m beneath the ground surface to the west of the 1000 m uplands of the Lake District. The fractured Borrowdale Volcanic Group (BVG) host rock is overlain by a sequence of Carboniferous and Permo-Triassic sediments. Fresh, saline and brine groundwaters exist in the subsurface. Upward trending fluid pressure gradients have been measured in the area of the potential repository site. Steady-state, 2-D simulations of fluid flow were undertaken with the OILGEN code. Topographically driven flow dominates the regional hydrogeology. Subsurface fluid flow trended persistently upwards through the potential repository site. The dense brines to the west of the site promoted upward deflection of groundwaters. The groundwater flow rate through the potential repository site was dependent upon the hydraulic conductivity of the BVG. Calibration of the model was achieved by matching simulated subsurface pressures to those measured in-situ. Emergent repository fluids could reach the surface in 15,000 years. The measured BVG hydraulic conductivity is up to 1000 times too high to be simply declared safe. Geochemical simulations, with Geochemist's Workbench?, showed natural BVG groundwaters display redox disequilibrium. The in-situ Eh is most probably +66 mV. Pyrite, absent from rock fractures, would not enforce a reducing -250 mV Eh. Steel barrels and alkaline cement are intended to geochemically retain 2.5x106 kg of uranium. Simulations of repository cement/BVG groundwater interactions produced pH 10 at 80°C but no change in the +66 mV Eh. Steel barrel interactions produced an alkaline fluid with Eh -500 mV. Uranium solubility in the high pH repository near field was as high as 10-2.7 M, regardless of steel interactions. Uranium solubility adjacent to the repository (pseudo near field) was controlled by Eh; ranging from 10-13 M in the presence of steel, to 10-2.7 M with no steel. Uranium retention is controlled only by steel barrel durability. Oxidising, natural BVG groundwater will enhance steel barrel destruction. Distant from repository (far field) uranium solubility was 10-5.4 M if Eh was as measured in-situ. Thermodynamic data variations affect the calculation of uranium solubility; uranium near field solubility can be as high as 10-1.4 M. Uranium solubilities in near-field high pH groundwater could be more than 600 times greater than the 10-5.5 M used by the UK Nirex Ltd. in their safety case simulations.

Page generated in 0.0259 seconds