91 |
A study of linear synchronous motors in the tractive and levitative modesDunn, R. W. January 1988 (has links)
No description available.
|
92 |
Design and development of an active roll control suspensionHickson, Luke R. January 1996 (has links)
No description available.
|
93 |
Controllability of road vehicles at the limits of tyre adhesionKohn, Heinz Joachim January 1998 (has links)
The research project 'Controllability of Road Vehicles at the Limits of Tyre Adhesion' (CROVLA) was established to investigate how tyre and chassis properties contribute to the handling characteristics and stability of vehicles operating at or near to the limit condition. The project involved the Department of Transport, SP Tyres UK Limited, Jaguar Cars and Cranfield University. An extensive proving ground test program of typical limit handling tests provided characteristic driver input and vehicle response data for a variety of vehicle configurations. The test data analysis was based on the concept of correlation. Cross- correlation coefficients and average response time delays were obtained for various pairs of quantities, namely steering angle and torque for the input and yaw rate and lateral acceleration for the response. The predictability of the vehicle response was evaluated by the rate by which the correlation coefficients change with severity. Analogous to the proving ground work, vehicle dynamics simulations were carried out. Two programs were employed to study the steady state performance and the transient limit handling behaviour. The 'Steady State Cornering Model' was used to confirm some basic suspension design rules established for optimising the lateral adhesion of a suspension design. The importance of controlling camber and vehicle jacking by an appropriate suspension design was identified. A detailed vehicle model was built-up using the simulation code AUTOSIM. After validating the model against proving ground data, some parametric studies were conducted to quantify the effects of suspension and tyre properties on the transient limit response behaviour. Proving ground and simulation results suggest that response time lags and cross- correlation coefficients in combination with other handling parameters can be used as objective quality measures. The results quantified to what extent tyre and chassis modifications change the limit handling behaviour.
|
94 |
The mechanics of the steered wheels of a road vehicleKurt-Elli, H. January 1982 (has links)
Modern road vehicle suspension and steering systems may generally be classed as multi-loop spatial mechanisms, designed with links constrained and interconnected in such a manner as to attempt a preferred and prescribed motion of the steered wheels with regard to the inputs to the system. The mechanism incorporates elastic and damping elements and is terminated to the ground surface via the tyres. The complete system may be modelled as a multi-body system with spatial kinematics. This work demonstrates an analysis and simulation of the mechanics of a double wishbone/rack and pinion suspension and steering system modelled as a multi-body system. A 3-dimensional Newton-Euler based approach employing vector and matrix notation is used in deriving the coupled set of non-linear equations of motion, and these together with the kinematic equations of constraint are cast in state space form, and numerical solutions sought using a digital computer. The kinematic equations are derived from the velocity loop equations for the model, and deal with the so-called redundant degrees-of-freedom arising in models of this type in a completely general manner. The tyre, shock absorber, main spring, and steering gear are modelled from empirical data. A feature of the work is that the complete set of equations need not be excessively manipulated manually, and that use of a set of specially written computer program routines allows a numerical formulation of the equations in the machine, enabling the main program to be written from inspection of the 'raw' equations. Large displacements and therefore changes of geometry are considered, with the provision for partial numerical linearization of the geometric aspects if required. The kinematic behaviour of the model is also described. A supporting experimental programme of work with a vehicle on a rolling drum rig has been conducted in parallel to the simulation work. And results indicate good correlation between theory and experiment at low frequencies of vibration.
|
95 |
The reduction of structural acoustic coupling in car bodiesRichards, T. L. January 1982 (has links)
The nature of sound in cars is discussed in the light of previous experimental and theoretical work, and the major contributions to interior noise are identified. The acoustic field inside a vibrating structure is analysed theoretically in terms of the acoustic cavity modes and the structural modes, and it is shown that'reduction of structural-acoustic coupling could reduce the response for a wide variety of force inputs. Finite element analyses of prismatic acoustic cavities and two-dimensinal ring structures are described and these are combined in a simple theoretical model of ring-mode excitation of sound. By stiffening selected structural elements, the structural-acoustic coupling, and hence the acoustic response, are reduced.
|
96 |
Integrated control of road vehicle dynamicsDorling, Richard J. January 1996 (has links)
No description available.
|
97 |
Analysis of car body structuresPage, Laurence J. January 1982 (has links)
The requirement to develop lighter vehicle structures arose as a result of the rapidly rising price of oil. The weight of a vehicle makes a considerable contribution to the power required to propel it and therefore the quantity of fuel used. The work presented here is an investigation into the analysis of the components of a vehicle structure, with the aim of obtaining a greater understanding of their behaviour. This knowledge is then applicable to the design of lighter structures made from an assembly of the components studied.
|
98 |
Energy transformation at the friction interface of a brakeDay, Andrew J. January 1983 (has links)
Energy transformation at the friction interface of a brake has been studied in a system where resin bonded composite friction material is applied to a metal mating body. A time-step simulation of braking friction was developed using finite element techniques, based upon the PAFEC 75 program, combining calculations of interface contact, pressure and friction force distributions with transient temperature analysis. Only compressive normal forces and tangential friction forces are transmitted across the interface, and these were assumed to be related by Amontons' Laws; the coefficient of friction so defined being considered constant for the purposes of the analyses presented.
|
99 |
Analysis of disc brake squeal using the finite element methodMohd Ripin, Zaidi Bin January 1995 (has links)
The problem o f disc brake squeal has been examined by developing a finite element model of the coupled pad-disc system , conducting complex eigenvalue analysis and associating unstable modes with potential squeal problem areas. A key issue in this process is the representation of the contact pressure distribution at the frictional interface between the disc and the pad. Non-linear contact analysis using the finite element model of the pad revealed that contact is only partial at the pad-disc interface and that the contact pressure distribution depends on the friction coefficient, Young’s modulus of the friction material and the way the applied pressure is distributed on the pad backplate. A new method is proposed in which interface contact stiffness is related to brake line pressure using a statistical approach based on the measured surface properties of the interface. Complex eigenvalue analysis of the coupled pad-disc system has shown that unstable modes exist within different ranges of contact stiffness thereby providing an explanation of the effect of varying line pressure on squeal. The two most unstable modes from the analysis show good correlation with experimental squeal results. The coupled model is then used for parametric studies the results of which indicate that high coefficient of friction and uniform contact pressure distribution increase instability whilst a trailing edge biased pressure distribution and a high support stiffness at the pad backplate reduce it. Limiting the disc symmetry by introducing equispaced slots was shown to be effective in reducing instabilities involving diametral modes of the disc with the same order of symmetry only Other modes were stabilised by increasing the rigidity of the pad. The overall results suggest that either the pad or the disc can be mainly responsible for the instability depending on the mode thus unifying the different approaches to disc brake squeal and enabling the most appropriate component to be targeted for squeal abatement purposes.
|
100 |
The performance of vehicle suspensions fitted with controllable dampersFirth, Gregory R. January 1991 (has links)
First, techniques for modelling the vehicle and road surface are discussed, and the standard linear and nonlinear analysis methods are reviewed. Then, using the quarter car model and a single idealised road surface, a brief analysis of the passive and active suspensions, including full and limited state feedback schemes, is presented. The performance in terms of ride comfort, road holding ability and suspension travel for both systems is established, providing a yardstick against which the controllable damper systems can be compared. Three suspensions fitted with controllable dampers are then analysed. In order of increasing complexity these are; a three-state adaptive system, a two-state switcliable system, and a continuously variable system. After a performance comparison of the ideal system, the practical limitations present in real hardware are included in the damper model. Their effect on performance is quantified and realistic response targets are set. The model is then extended to a two dimensional “bicycle” model, which enables control laws to be generated which take into account the correlation between front and rear wheel inputs. Using these laws to drive the active and continuously variable damper system, the advantages of a correlated law are identified. The accelerations and suspension displacements of a passively suspended production vehicle are measured during actual runs over three roads of varying roughness. These are used to estimate the surface roughness properties of the roads. Using this range of typical conditions, the idea of system adaptation is then considered. The performance of each controllable damper system lies between that of the active and conventional passive systems. The continuously variable system generally offers the best ride comfort, but worthwhile improvements are also possible with the two-state switchable system. The adaptive system offers only marginal improvements for the conditions considered.
|
Page generated in 0.0294 seconds