1 |
The formulation and implementation of a new stability and control design methodology for multi-disciplinary optimisation applied to aeronautical vehiclesIqbal, Shaheed January 2005 (has links)
No description available.
|
2 |
Μεθοδολογία ανάλυσης και προκαταρκτικού σχεδιασμού μη-συμβατικών αεροναυπηγικών δομώνΣταματέλος, Δημήτριος 04 May 2011 (has links)
O σχεδιασμός και η ανάπτυξη μιας σύγχρονης αεροναυπηγικής κατασκευής περιλαμβάνει ως επιμέρους φάσεις (μεταξύ άλλων) τον αρχικό και τον προκαταρκτικό σχεδιασμό. Οι φάσεις αυτές έχουν ιδιαίτερη σημασία διότι εκεί δίνεται η αρχική μορφή και οι διαστάσεις της κατασκευής. Είναι γεγονός ότι η συμβατική σχεδίαση των βασικών δομικών στοιχείων των αεροσκαφών έχει φτάσει σε πολύ υψηλό επίπεδο βελτιστοποίησης που επιδέχεται πλέον μόνο μικρά περιθώρια περαιτέρω βελτίωσης. Οι σύγχρονες όμως απαιτήσεις των ελαφρών κατασκευών, όπως δραστική μείωση του βάρους, αύξηση του ωφέλιμου φορτίου κτλ. ωθεί τις αεροναυπηγικές βιομηχανίες στη δημιουργία δομών που ξεφεύγουν από τις παραδοσιακές (μη-συμβατικές δομές). Παράλληλα με τα παραπάνω γίνεται προσπάθεια για μερική αντικατάσταση μεταλλικών υλικών από σύνθετα υλικά στις πρωτεύουσες δομές αεροναυπηγικών κατασκευών.
Για να σχεδιαστούν και να εξελιχθούν μη-συμβατικές αεροναυπηγικές δομές χωρίς να καταφύγει κάποιος σε εκτενείς πειραματικές δοκιμές, η σύγχρονη τάση είναι η ανάπτυξη και ο συνδυασμός προτύπων συμπεριφοράς στη λογική της εξομοίωσης των πειραματικών δοκιμών. Η εξομοίωση αυτή επιτυγχάνεται με τη βοήθεια ηλεκτρονικών υπολογιστών και κατάλληλων μεθόδων βασισμένων στη θεωρία των πινάκων (Πεπερασμένα Στοιχεία, Συνοριακά Στοιχεία κλπ.). Στη φάση του αρχικού και προκαταρκτικού σχεδιασμού η εφαρμογή των μεθοδολογιών προσομοίωσης δεν είναι πάντοτε εύκολη και απλή, λόγω των πολλαπλών αλλαγών στη γεωμετρία, το υλικό και τις κατασκευαστικές λεπτομέρειες που πραγματοποιούνται στη δομή κατά την επαναληπτική διαδικασία του σχεδιασμού. Επομένως, η αποκλειστική χρήση αριθμητικών μεθόδων ανάλυσης καθίσταται αναποτελεσματική από άποψη χρονικών απαιτήσεων, αν δεν συνοδεύεται από αναλυτικές ή ημιαναλυτικές προσεγγίσεις επιμέρους προβλημάτων του σχεδιασμού.
Βασικό μέρος του προκαταρκτικού σχεδιασμού μιας πτέρυγας μη συμβατικής δομής αποτελεί η αποφυγή της αστοχίας του άνω τμήματός της, διότι οι λεπτότοιχες ενισχυμένες με δοκούς πλάκες που χρησιμοποιούνται στην κατασκευή υφίστανται λυγισμό λόγω των θλιπτικών φορτίσεων που κυρίως παραλαμβάνουν. Η διαστασιολόγηση των σύνθετων πλακών που φέρουν δοκούς ενίσχυσης στις κατασκευές αυτές απαιτούν συνήθως πλήθος επαναληπτικών υπολογισμών για διαφορετικές γεωμετρίες, φορτίσεις, οριακές συνθήκες κλπ. Η εξέταση της κάθε περίπτωσης μεμονωμένα με τη χρήση αριθμητικών μεθόδων καθιστά την επίλυση ολόκληρης της κατασκευής εξαιρετικά χρονοβόρα. Για το λόγο αυτό, στη φάση της αρχικής θεωρητικής μελέτης και της αρχικής διαστασιολόγησης η χρησιμοποίηση αναλυτικών μεθόδων για την εύρεση του κρίσιμου φορτίου λυγισμού πλακών με δοκούς ενίσχυσης οδηγεί στην εξοικονόμηση υπολογιστικού κόστους. Επομένως, η ανάπτυξη αναλυτικών ή ημιαναλυτικών μεθόδων προσδιορισμού των φορτίων λυγισμού ενισχυμένων με δοκούς συνθέτων πλακών και κελυφών θεωρείται πολύ σημαντική.
Για τον σκοπό αυτό, στο πλαίσιο αυτής της διατριβής, αναπτύσσονται αναλυτικές και ημιαναλυτικές λύσεις για το λυγισμό πολύστρωτων πλακών ενισχυμένων με ενισχυτικές διαμήκεις δοκούς, οι οποίες ενσωματώνονται σαν κριτήρια στη μέθοδο διαστασιολόγησης της δομής. Η μεθοδολογία συμπληρώνεται με πλήθος άλλων κατάλληλων κριτηρίων για τον έλεγχο της αντοχής των δομικών στοιχείων της πτέρυγας καθώς και με κριτήρια για την επαναδιαστασιολόγηση των στοιχείων κατά την επαναληπτική διαδικασία της βελτιστοποίησης. Με τη μεθοδολογία που αναπτύσσεται διερευνούνται διατάξεις δομής πτερύγων από σύνθετα υλικά με πολυάριθμες κύριες δοκούς.
Πιο συγκεκριμένα, αναπτύσσονται αναλυτικές/ημιαναλυτικές λύσεις ολικού και τοπικού λυγισμού πλακών που φέρουν δοκούς ενίσχυσης. Όσον αφορά τον ολικό λυγισμό αναπτύσσεται μια μεθοδολογία που βασίζεται στη μαθηματική μετατροπή μιας πλάκας που φέρει δοκούς ενίσχυσης σε μια ισοδύναμη ομογενή πλάκα. Η αναπτυχθείσα μεθοδολογία ομογενοποίησης των ενισχυμένων πλακών εμφανίζει σημαντικά πλεονεκτήματα σε σύγκριση με τις αντίστοιχες ήδη υπάρχουσες. Παράλληλα, η ενεργειακή μέθοδος Rayleigh-Ritz εφαρμόζεται για τη λύση προβλημάτων λυγισμού μερικώς ανισότροπων πλακών με ενισχυτικές δοκούς από σύνθετα υλικά, λαμβάνοντας διακριτά υπόψη τις ενισχυτικές δοκούς.
Όσον αφορά το πρόβλημα του τοπικού λυγισμού, αναπτύσσεται μια νέα μεθοδολογία για την εύρεση των κρίσιμων φορτίων τοπικού λυγισμού λεπτότοιχης πλάκας με χρήση ενεργειακών μεθόδων. Το μαθηματικό μοντέλο που χρησιμοποιείται για την περίπτωση του τοπικού λυγισμού της επικάλυψης είναι η απομόνωση του τμήματος της επικάλυψης μεταξύ δυο ενισχυτικών δοκών και η αντικατάσταση της δυσκαμψίας της υπόλοιπης πλάκας με ελατήρια μεταβλητής δυσκαμψίας. Η μεθοδολογία αυτή επεκτείνεται και στον προσδιορισμό της μεταλυγισμικής συμπεριφοράς μιας πλάκας ενισχυμένης με διαμήκεις δοκούς.
Οι παραπάνω μεθοδολογίες υπολογισμού του κρίσιμου φορτίου λυγισμού που αναπτύσσονται, στα πλαίσια αυτής της διατριβής, εφαρμόζονται στη διαστασιολόγηση πτέρυγας μη συμβατικής δομής από σύνθετα υλικά με πολυάριθμες κύριες δοκούς, σε αντίθεση με τις συμβατικές πτέρυγες (με δύο κύριες δοκούς). Η ανάλυση τάσεων της πτέρυγας πραγματοποιείται με τη βοήθεια της μεθόδου των πεπερασμένων στοιχείων. Η τελική διαστασιολόγηση επιτυγχάνεται με επαναληπτική διαδικασία βελτιστοποίησης βασισμένη σε αναλυτικές και ημιαναλυτικές σχέσεις. Με τον τρόπο αυτό, συγκρίνεται λεπτομερώς η συμβατική δομή πτέρυγας με 2 κύριες δοκούς και οι αντίστοιχες πτέρυγες με 4, 5 και 6 κύριες δοκούς. Για την περαιτέρω βελτιστοποίηση της συμπεριφοράς της πτέρυγας, διερευνάται η επίδραση που έχει η αλλαγή των μηχανικών ιδιοτήτων του υλικού και των επιτρεπόμενων ορίων παραμόρφωσης στη δυνατότητα ελαχιστοποίησης της μάζας της πτέρυγας. Υπολογίστηκε ότι κάτω από συγκεκριμένες συνθήκες η χρήση της μη συμβατικής πτέρυγας μπορεί να οδηγήσει σε μείωση μάζας μέχρι και 12%. / The design and development of a modern aerospace structure consists of many design stages. The most important stages are the conceptual and the preliminary where the initial sizing of the structure is obtained. It is known that the conventional design of the aircraft’s main structural members has reached a high optimization level, where margins for further improvement are small. The current demands of the lightweight structures such as weight reduction, payload increase etc. have led the aerospace industries develop unconventional structures and partially substitute the metallic materials of the primary structures with composites.
The current trend of designing and evolving unconventional aerospace structures, without performing extended experimental tests, leads to the development of behavior models. The simulation of the experimental tests (through the behavior models) is achieved using high performance computers and numerical methods (Finite Element Method, Boundary Element Method etc). To apply simulation methods during the conceptual and preliminary stage is not an easy task. Most of the difficulties are the numerous geometrical, material parameters and the structural details that alter during the iterative process of the design. So, the exclusive usage of numerical analysis methods becomes very time consuming, if it is not accompanied by analytical or semi analytical methods of the sub-problems of the design.
Part of the preliminary design of an unconventional wing structure is to prevent upper skin from failure. The stiffened panels that comprise the upper skin of the wing suffer from buckling due to the applied compressive loads. The sizing of the composite stiffened panels usually requires numerous of iterative calculations for various geometries, loading and boundary conditions etc. The examination of each case separately, with the use of numerical methods, results to time consuming analyses of the entire structure. Therefore, the development of appropriate analytical or semi analytical methods for estimating stiffened panels’ critical buckling load is of great importance.
For this purpose, in the present thesis, analytical and semi analytical methodologies are developed for estimating the critical buckling load of stiffened panels. The developed methodologies are incorporated as design criteria in the sizing routine of the entire structure. The sizing routine comprises additional sizing criteria for checking the strength of wing’s structural members at each phase of the iterative process. Applying the developed sizing routine in various wing configurations made of composite materials, multispar wing designs are studied.
Specifically, analytical and semi analytical methods for global and local buckling problems of stiffened panels are developed. The methodology of global buckling problems is based on the mathematical conversion of a stiffened panel to an equivalent homogeneous panel. The developed method of homogenization of stiffened panels appears to have significant advantages over the already existed homogenization methods. Additionally, the energy method Rayleigh-Ritz is applied for solving global buckling problems of stiffened panels with partial anisotropy considering discrete stiffeners.
Regarding local buckling problems of stiffened panels, a new methodology is developed for estimating the critical local buckling load with the use of energy methods. The approach considers the stiffened panel segment located between two stiffeners, while the remaining panel is replaced by equivalent transverse and rotational springs of varying stiffness, which act as elastic edge supports. The buckling analysis of the segment provides an accurate and conservative prediction of the panel local buckling behavior. Consequently, the developed methodology is extended in the prediction of post-buckling response of stiffened panels where skin has undergone local buckling.
The developed methodologies for calculating the critical buckling load are applied for sizing the wing members of an unconventional wing (multispar configuration) from composite materials. An efficient methodology based on fast Finite Element (FE) stress analysis combined to analytically formulated design criteria is presented for the initial sizing of a large scale composite component. A detailed comparison between optimized designs of conventional (2-spar) and three alternative wing configurations which comprise 4-, 5-, and 6-spars for the wing construction is performed. In order to understand the effect of different material properties, as well as the variation of maximum strain level allowed in the total wing mass, parametric analyses are performed for all wing configurations considered. It arises that under certain conditions the multispar configuration demonstrates significant advantages over the conventional design. This would lead to a mass reduction of 12%.
|
Page generated in 0.0209 seconds