• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 14
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Swarm intelligence and its applications to wireless ad hoc and sensor networks

Selvarajah, K. January 2006 (has links)
Swarm intelligence, as inspired by natural biological swarms, has numerous powerful properties for distributed problem solving in complex real world applications such as optimisation and control. Swarm intelligence properties can be found in natural systems such as ants, bees and birds, whereby the collective behaviour of unsophisticated agents interact locally with their environment to explore collective problem solving without centralised control. Recent advances in wireless communication and digital electronics have instigated important changes in distributed computing. Pervasive computing environments have emerged, such as large scale communication networks and wireless ad hoc and sensor networks that are extremely dynamic and unreliable. The network management and control must be based on distributed principles where centralised approaches may not be suitable for exploiting the enormous potential of these environments. In this thesis, we focus on applying swarm intelligence to the wireless ad hoc and sensor networks optimisation and control problems. Firstly, an analysis of the recently proposed particle swarm optimisation, which is based on the swarm intelligence techniques, is presented. Previous stability analysis of the particle swarm optimisation was restricted to the assumption that all of the parameters are non random since the theoretical analysis with the random parameters is difficult. We analyse the stability of the particle dynamics without these restrictive assumptions using Lyapunov stability and passive systems concepts. The particle swarm optimisation is then used to solve the sink node placement problem in sensor networks. Secondly, swarm intelligence based routing methods for mobile ad hoc networks are investigated. Two protocols have been proposed based on the foraging behaviour of biological ants and implemented in the NS2 network simulator. The first protocol allows each node in the network to choose the next node for packets to be forwarded on the basis of mobility influenced routing table. Since mobility is one of the most important factors for route changes in mobile ad hoc networks, the mobility of the neighbour node using HELLO packets is predicted and then translated into a pheromone decay as found in natural biological systems. The second protocol uses the same mechanism as the first, but instead of mobility the neighbour node remaining energy level and its drain rate are used. The thesis clearly shows that swarm intelligence methods have a very useful role to play in the management and control iv problems associated with wireless ad hoc and sensor networks. This thesis has given a number of example applications and has demonstrated its usefulness in improving performance over other existing methods.
12

Power system stability using coordinated controller settings

Brook, D. P. January 2002 (has links)
No description available.
13

A case study in nonlinear on-line optimal control

San-Blas, Felipe January 2003 (has links)
No description available.
14

Robust & stochastic model predictive control

Cheng, Qifeng January 2012 (has links)
In the thesis, two different model predictive control (MPC) strategies are investigated for linear systems with uncertainty in the presence of constraints: namely robust MPC and stochastic MPC. Firstly, a Youla Parameter is integrated into an efficient robust MPC algorithm. It is demonstrated that even in the constrained cases, the use of the Youla Parameter can desensitize the costs to the effect of uncertainty while not affecting the nominal performance, and hence it strengthens the robustness of the MPC strategy. Since the controller u = K x + c can offer many advantages and is used across the thesis, the work provides two solutions to the problem when the unconstrained nominal LQ-optimal feedback K cannot stabilise the whole class of system models. The work develops two stochastic tube approaches to account for probabilistic constraints. By using a semi closed-loop paradigm, the nominal and the error dynamics are analyzed separately, and this makes it possible to compute the tube scalings offline. First, ellipsoidal tubes are considered. The evolution for the tube scalings is simplified to be affine and using Markov Chain model, the probabilistic tube scalings can be calculated to tighten the constraints on the nominal. The online algorithm can be formulated into a quadratic programming (QP) problem and the MPC strategy is closed-loop stable. Following that, a direct way to compute the tube scalings is studied. It makes use of the information on the distribution of the uncertainty explicitly. The tubes do not take a particular shape but are defined implicitly by tightened constraints. This stochastic MPC strategy leads to a non-conservative performance in the sense that the probability of constraint violation can be as large as is allowed. It also ensures the recursive feasibility and closed-loop stability, and is extended to the output feedback case.

Page generated in 0.0173 seconds