• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariate skew-normal/independent distributions: properties and inference / Multivariate skew-normal/independent distributions: properties and inference

Lachos, Victor H., Labra, Filidor V. 25 September 2017 (has links)
Liu (1996) discussed a class of robust normal/independent distributions which contains a group of thick-tailed cases. In this article, we develop a skewed version of these distributions in the multivariate setting, and we call them multivariate skew normal/independent distributions. We derive several useful properties for them. The main virtue of the members of this family is that they are easy to simulate and lend themselves to an EM-type algorithm for maximum likelihood estimation. For two multivariate models of practical interest, the EM-type algorithm has been discussed with emphasis on the skew-t, the skew-slash, and the contaminated skew-normal distributions. Results obtained from simulated and two real data sets are also reported. / Liu (1996) discute una clase de distribuciones robustas a las que apela como normal/independiente, y que contiene un grupo de distribuciones de colas pesadas. En este artículo desarrollamos una versión asimétrica de tales distribuciones en un escenario multivariado, a las que llamaremos distruciones normales asimétricas independientes multivariadas. Para tales distribuciones derivamos algunas propiedades. La principal virtud de los miembros de esta familia es que son fáciles de simular y se prestan a un algoritmo de tipo EM para realizar estimaciones de máxima verosimilitud de sus parámetros. Para dos modelos multivariados de interés práctico se discute el algoritmo EM con énfasis en las distribuciones t-asimétrica, slash asimétrica y normal asimétrica contaminada. Los resultados obtenidos a partir de simulaciones y de dos conjuntos de datos reales son reportados.

Page generated in 0.043 seconds